Альтернативные и возобновляемые источники энергии

Автор: Пользователь скрыл имя, 11 Апреля 2014 в 13:31, реферат

Краткое описание

Ныне перед всеми учеными мира стоит проблема нахождения и разработки новых альтернативных источников энергии.
В данной работе будут рассмотрены проблемы нахождения новых видов топлива, которые можно было бы назвать безотходными и неисчерпаемыми.

Оглавление

Введение………………………………………………………………….…3
Раздел 1. Проблемы энергетики……………………………………..…….6
Раздел 2. Альтернативные источники энергии………………...…..……..7
2.1. Основные причины перехода к АИЭ…………………..…………......7
2.2. Энергия Солнца……………………………………………………...…8
2.3. Ветер…………………………………………………………………….9
2.4. Водород…………………………………………………………………11
2.5. Гидроэнергия…………………………………………...………………12
2.6. Энергия приливов и отливов…………………………………………..14
2.7. Энергия волн…………………………………………………………....16
2.8. Геотермальная энергия…………………………………………………17
2.9. Гидротермальная энергия…………………………………………...….18
1.10. Энергия биомассы………………………………………………..........20
Заключение……………………………………………………………...……22
Список используемой литературы………………………………………….23

Файлы: 1 файл

альтернативные и воз ист.docx

— 43.62 Кб (Скачать)

Еще одной очень перспективной разработкой, не получившей пока широкого применения, является недавно созданная   геликоидная турбина Горлова (по имени ее создателя). Ее особенность заключается в том, что она не нуждается в сильном напоре и эффективно работает, используя кинетическую энергию водяного потока - реки, океанского течения или морского прилива. Это изобретение изменило привычное представление о гидроэнергостанции, мощность, которой ранее зависела только от силы напора воды, то есть от высоты плотины ГЭС.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2.6 Энергия приливов  и отливов.

 

Несоизмеримо более мощным источником водных потоков являются приливы и отливы. Подсчитано, что потенциально приливы и отливы могут дать человечеству примерно 70 млн. миллиардов киловатт-часов в год. Для сравнения: это примерно столько же энергии, сколько может дать использование в энергетических целях разведанных запасов каменного и бурого угля, вместе взятых; вся экономика США 1977 г. базировалась на производстве 200 млрд. киловатт-часов, вся экономика СССР того же года - на 1150 млрд., хрущевский “коммунизм” к 1980 г. должен был быть построен на 3000 млрд. киловатт-часов. Образно говоря, одни только приливы могли бы обеспечить процветание на Земле тридцати тысяч современных “Америк” при максимально эффективном использовании приливов и отливов, но до этого пока далеко. Проекты приливных гидроэлектростанций детально разработаны в инженерном отношении, экспериментально опробованы в нескольких странах, в том числе и на Кольском полуострове. Продумана даже стратегия оптимальной эксплуатации приливной электростанции (ПЭС): накапливать воду в водохранилище за плотиной во время приливов и расходовать ее на производство электроэнергии, когда наступает “пик потребления” в единых энергосистемах, ослабляя тем самым нагрузку на другие электростанции.

На сегодняшний день ПЭС уступает тепловой энергетике: кто будет вкладывать миллиарды долларов в сооружение ПЭС, когда есть нефть, газ и уголь, продаваемые развивающимися странами за бесценок? В тоже время она обладает всеми необходимыми предпосылками, чтобы в будущем стать важнейшей составляющей мировой энергетики, такой, какой сегодня, к примеру, является природный газ.

Для сооружения ПЭС даже в наиболее благоприятных для этого точках морского побережья, где перепад уровней воды колеблется от 1-2 до 10-16 метров, потребуются десятилетия, или даже столетия. И все же процент за процентом в мировой энергобаланс ПЭС могут и должны начать давать уже на протяжении этого столетия.

Первая приливная электростанция мощностью 240 МВт была пущена в 1966 г. во Франции в устье реки Ранс, впадающей в пролив Ла-Манш, где средняя амплитуда приливов составляет 8.4 м. Открывая станцию, президент Франции Шарль де Голль назвал ее выдающимся сооружением века. Несмотря на высокую стоимость строительства, которая почти в 2.5 раза превосходит расходы на возведение речной ГЭС такой же мощности, первый опыт эксплуатации приливной ГЭС оказался экономически оправданным. ПЭС на реке Ранс входит в энергосистему Франции и в настоящее время эффективно используется.

Существуют также проекты крупных ПЭС мощностью 320 МВт (Кольская) и 4000 МВт (Мезенская) на Белом море, где амплитуда приливов составляет 7-10 м. Планируется использовать также огромный энергетический потенциал Охотского моря, где местами, например в Пенжинской губе, высота приливов достигает 12.9 м, а в Гижигинской губе - 12-14 м .

Благоприятные предпосылки для более широкого использования энергии морских приливов связаны с возможностью применения геликоидной турбины Горлова, которая позволяет сооружать ПЭС без плотин, сокращая расходы на строительство.

 

 

 

 

 

 

 

 

 

 

 

2.7 Энергия волн.

 

Уже инженерно разработаны и экспериментально опробованы высокоэкономичные волновые энергоустановки, способные эффективно работать даже при слабом волнении или вообще при полном штиле. На дно моря или озера устанавливается вертикальная труба, в подводной части которой сделано “окно”; попадая в него, глубинная волна (а это - почти постоянное явление) сжимает воздух в шахте, а тот крутит турбину генератора. При обратном движении воздух в турбине разрежается, приводя в движение вторую турбину. Таким образом, волновая электростанция работает беспрерывно почти при любой погоде, а ток по подводному кабелю передается на берег.

Некоторые типы ВЭС могут служить отличными волнорезами, защищая побережье от волн и экономя, таким образом, миллионы долларов на сооружение бетонных волнорезов.

Под руководством директора Лаборатории энергетики воды и ветра Северо-Восточного университета в Бостоне был разработан проект первой в мире океанской электростанции. Она будет сооружена во Флоринском проливе, где берет начало Гольфстрим. На его выходе из Мексиканского залива мощность водяного потока составляет 25 млн. м3 в секунду, что в 20 раз превышает суммарный расход воды во всех реках земного шара! По подсчетам специалистов средства, вложенные в проект, окупятся в течение пяти лет.

В этой уникальной электростанции для получения тока мощностью 38 кВт будет использоваться турбина Горлова. Эта геликоидная турбина имеет три спиральные лопасти и под действием потока воды вращается в 2-3 раза быстрее скорости течения. В отличие от многотонных металлических турбин, применяемых на речных гидроэлектростанциях, размеры изготовленной из пластика турбины Горлова невелики (диаметр 50 см, длина 84 см), масса ее всего 35 кг. Эластичное покрытие поверхности лопастей уменьшает трение о воду и исключает налипание морских водорослей и моллюсков. Коэффициент полезного действия турбины Горлова в три раза выше, чем у обычных турбин.

2.8 Геотермальная  энергия.

 

Подземное тепло планеты - довольно хорошо известный и уже применяемый источник “чистой” энергии. В России первая геоТЭС мощностью 5 МВт была построена в 1966 г. на юге Камчатки, в долине реки Паужетки. В 1980 г. ее мощность составляла уже 11 МВт. В Италии, в районах Ландерелло, Монте-Амиата и Травеле, работают 11 таких станций общей мощностью 384 МВт. ГеоТЭС действуют также в США (Калифорния, Долина Больших Гейзеров), Исландии (у озера Миватн), Новой Зеландии, Мексики и Японии. Столица Исландии Рейкьявик получает тепло исключительно от горячих подземных источников. Но потенциальная мощность геотермальной энергетики намного выше.

Геологи открыли, что раскаленные до 180-200оС массивы на глубине 4-6 км занимают большую часть территории нашей страны, а с температурой до 100-150С встречаются почти повсеместно. Кроме того, на нескольких миллионах квадратных километров располагаются горячие подземные реки и моря с глубиной залегания до 3.5 км и с температурой воды до 200С - естественно, под давлением, - так что, пробурив ствол, можно получить фонтан пара и горячей воды без всякой электротеплоцентрали.

 

 

 

 

 

 

 

 

 

 

 

2.9 Гидротермальная  энергия.

 

Кроме геотермальной энергии активно используется тепло воды. Вода - это всегда хотя бы несколько градусов тепла, а летом она нагревается до 25 С. Почему бы не использовать часть этого тепла? Для этого необходима установка, действующая по принципу “холодильник наоборот”. Известно, что холодильник “выкачивает” из своей замкнутой камеры тепло и выбрасывает его в окружающую среду. Если пропускать воду через холодильный аппарат, то у нее тоже можно отбирать тепло. Горячий пар, который образуется в результате теплообмена, конденсируется, его температура поднимается до 110С, а затем его можно пускать либо на турбины электростанций, либо на нагревание воды в батареях центрального отопления до 60-65 С. На каждый киловатт-час затрачиваемой на это энергии природа дает 3 киловатт-часа! По тому же принципу можно получать энергию для кондиционирования воздуха при жаркой погоде.

Подобные установки наиболее эффективны при больших перепадах температур, как, например, в морях: на глубине вода очень холодна - около 4С, а на поверхности нагревается до 25 С, что составляет 20 градусов разницы! Все необходимые инженерные разработки уже проведены и опробованы экспериментально (например, у атолла Каваратти в Лаккадивском архипелаге около юго-западного побережья Индии), осталось только претворить их в жизнь везде, где имеются подходящие природные условия.

Пришло время, когда человечество вплотную должно заняться сохранением среды своего обитания. Необходимы как научные, так и практические усилия для охраны природы, чтобы род человеческий не только выжил, но и продолжал развиваться.

Естественным путем выживания являются максимизация стратегии бережливости в отношениях с окружающим миром и увеличение замкнутости круговорота всех веществ, вовлекаемых в сферу человеческой деятельности.

Однако легко это сформулировать теоретически, но очень трудно перевести на язык практической деятельности. В этом сложном процессе должны участвовать все члены мирового сообщества, начиная от международных организаций и кончая каждым человеком в отдельности в его обычной жизни. Тогда на первом плане окажутся не идеологические, а экологические проблемы; доминировать будут не отношения между нациями, а отношения между человечеством и природой.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2.10.Энергия биомассы.

 

Вклад биомассы в мировой энергетический баланс составляет около 12%, хотя значительная доля биомассы, используемой для энергетических нужд, не является коммерческим продуктом и, как результат, не учитывается официальной статистикой. В странах Европейского Союза, в среднем, вклад биомассы в энергетический баланс составляет около 3%, но с широкими вариациями: в Австрии - 12%, в Швеции - 18%, в Финляндии - 23%.

Первичной биомассой являются растения, произрастающие на суше и в воде. Биомасса образуется в результате фотосинтеза, за счет которого солнечная энергия аккумулируется в растущей массе растений. Энергетический кпд собственно фотосинтеза составляет около 5%. В зависимости от рода растений и климатической зоны произрастания это приводит к различной продуктивности в расчете на единицу площади, занятой растениями. Для северных зрелых, медленно растущих лесов продуктивность составляет 1 т прироста древесины в год на 1 га. Для сравнения урожай кукурузы (вся зеленая масса) в штате Айова, США в 1999 г. составил около 50 т/га.

Наряду с первичной растительной биомассой значительный энергетический потенциал содержится в отходах животноводства, твердых бытовых отходах и отходах различных отраслей промышленности. Использование этого потенциала возможно термохимическими или биохимическими методами. В первом случае речь идет в основном о твердых бытовых отходах, которые либо сжигаются, либо газифицируются на мусороперерабатывающих фабриках. Во втором случае сырьем является навоз или жидкие бытовые стоки, которые перерабатываются в биогаз.

В России ежегодно образуется около 60 млн. т твердых бытовых отходов (ТБО); количество отходов животноводства и птицеводства составляет около 130 млн. т/год, а осадков сточных вод 10 млн. т/год. Энергетический потенциал этих отходов составляет 190 млн. т у. т. Этот потенциал используется пока совершенно недостаточно. Имеются единичные опытные установки по переработке ТБО, эксплуатационные характеристики которых нельзя признать удовлетворительными для широкого промышленного использования. В этом направлении предстоит еще большая работа.

Серьезные успехи были достигнуты в области переработки жидких городских стоков. Уже с 50-х годов прошлого века на Курьяновской и Люберецкой станциях г. Москвы производилась очистка городских стоков и работали мощные биогазогенераторы - метантенки. Этот радикальный метод переработки активного ила и осадков сточных вод был затем реализован на станциях очистки Новосибирска, Сочи и других городов России.

В основе биохимической переработки отходов животноводства и птицеводства лежит анаэробное сбраживание. В результате этого процесса органическая масса отходов определенными штаммами бактерий превращается в биогаз. Обычный состав биогаза: до 70% метана и 30% диоксида углерода.

В настоящее время в России разработкой, созданием, производством опытных серий оборудования, установок в целом, реализующих высокорентабельные биогазовые технологии, занимается ЗАО Центр "ЭкоРос". Этот Центр разработал и выпускает опытными сериями индивидуальные биогазовые установки ИБГУ-1 для хозяйств, имеющих до 5-6 голов крупного рогатого скота. За 10 лет Центр произвел и реализовал 86 комплектов ИБГУ-1: из них - 79 в России, 4 - в Казахстане, 3 - в Белоруссии. С 1997 года по документации ЗАО Центр "ЭкоРос" освоено производство таких установок в Китае в г. Ухань на совместном китайско-российском предприятии.

 

 

 

 

 

 

 

 

ЗАКЛЮЧЕНИЕ

 

Энергия - это движущая сила любого производства. Тот факт, что в распоряжении человека оказалось большое количество относительно дешевой энергии, в значительной степени способствовало индустриализации и развитию общества. Однако в настоящее время при огромной численности населения и производство, и потребление энергии становится потенциально опасным. Наряду с локальными экологическими последствиями, сопровождающимися загрязнением воздуха и воды, эрозией почвы, существует опасность изменения мирового климата в результате действия парникового эффекта.

Человечество стоит перед дилеммой: с одной стороны, без энергии нельзя обеспечить благополучия людей, а с другой - сохранение существующих темпов ее производства и потребления может привести к разрушению окружающей среды, серьезному ущербу здоровья человека.

 Еще задолго до того, как будут использованы все мыслимые ресурсы, разразиться экологическая катастрофа, которая превратит Землю в планету, совершенно не приспособленную для жизни человека.

 

 

 

 

 

 

 

 

 

 

 

 

 

СПИСОК ИСПОЛЬЗУЕМОЙ ЛИТЕРАТУРЫ

 

    1. Альтернативная энергетика http://ru.wikipedia.org
    2. Альтернативные источники энергии  современности   http://www.bioges.ru/index.php?option=com_content&view=article&id=89&lang=ru
    3. Биоэнергия http://energy-source.ru/istochniki/bio.html
    4. Геотермальная энергия http://alternativenergy.ru/energiya/320 geotermalnaya-energiya.html

Информация о работе Альтернативные и возобновляемые источники энергии