Автор: Пользователь скрыл имя, 24 Апреля 2013 в 18:42, дипломная работа
Целью данной работы является изучение опыта специалистов в области прогнозирования финансовых рынков с использованием искусственных нейросетей, а также разработка собственных подходов к прогнозированию рынка FOREX и проектированию торговых систем, пригодных для использования в торговом зале.
Для достижения поставленной цели в дипломной работе решаются следующие задачи:
а) проведение обзора специализированной литературы, ресурсов глобальной сети Интернет, а также рынка программных средств, реализующих нейросетевые принципы для решения задач прогнозирования;
б) постановка и выполнение оптов с целью определения этапов процесса решения задачи прогнозирования, которые нуждаются в автоматизации; сделать выводы по результатам опытов
ВВЕДЕНИЕ 7
1. ПРОГНОЗИРОВАНИЕ ФИНАНСОВЫХ РЫНКОВ 10
1.1. СОВРЕМЕННЫЕ ФИНАНСОВЫЕ РЫНКИ. МЕЖДУНАРОДНЫЙ ВАЛЮТНЫЙ РЫНОК FOREX 10
1.2. ПРОГНОЗИРОВАНИЕ ФИНАНСОВЫХ РЫНКОВ 12
1.2.1. Прогноз и цели его использования 12
1.2.2. Основные понятия и определения проблемы прогнозирования 13
1.2.3. Методы прогнозирования финансовых рынков 17
1.2.4. Использование систем с искусственной «памятью» для решения задач прогнозирования 22
1.3. ИСКУССТВЕННЫЕ НЕЙРОННЫЕ СЕТИ 24
1.3.1. Биологические нейронные сети 24
1.3.2. Математическая модель нейрона, искусственные нейросети 26
1.3.3. Основополагающие принципы нейровычислений 29
1.3.4. Обучение искусственных нейронных сетей 31
1.3.5. Задача прогнозирования с использованием технологии нейровычислений 33
1.4. ОБЗОР ПРОГРАММНЫХ СРЕДСТВ, РЕАЛИЗУЮЩИХ АЛГОРИТМЫ НЕЙРОВЫЧИСЛЕНИЙ ДЛЯ РЕШЕНИЯ ЗАДАЧ ПРОГНОЗИРОВАНИЯ 35
2. ПРОГНОЗИРОВАНИЕ РЫНКА FOREX С ИСПОЛЬЗОВАНИЕМ ИСКУССТВЕННЫХ НЕЙРОСЕТЕЙ 42
2.1. ПОСТАНОВКА ЗАДАЧИ ПРОГНОЗИРОВАНИЯ ФИНАНСОВЫХ РЫНКОВ С ИСПОЛЬЗОВАНИЕМ ИСКУССТВЕННЫХ НЕЙРОСЕТЕЙ 42
2.2. ОПИСАНИЕ ТЕКУЩЕЙ РЫНОЧНОЙ СИТУАЦИИ. ПРЕДСТАВЛЕНИЕ ВХОДНЫХ ДАННЫХ 45
2.2.1. Перемасштабирование графика цены в единичный интервал 45
2.2.2. Описание рыночной ситуации при помощи приращений котировок 47
2.2.3. Обобщение значений индикаторов технического анализа 51
2.3. ПРОГНОЗИРУЕМЫЕ ВЕЛИЧИНЫ. ПРЕДСТАВЛЕНИЕ ВЫХОДНЫХ ДАННЫХ 53
2.3.1. Классификация рыночных ситуаций. Шаблон максимальной прибыли 53
2.3.2. Аппроксимация прогнозируемых величин. Сглаженный шаблон максимальной прибыли 58
2.3.3. Классификация рыночных ситуаций по достижимости значимых уровней. 61
2.2.4. Аппроксимация отношения текущего положения цены к коридору будущих цен 62
2.4. ОБУЧЕНИЕ ИСКУССТВЕННЫХ НЕЙРОСЕТЕЙ. АНАЛИЗ РЕЗУЛЬТАТОВ 63
2.4.1. Нейросетевой индикатор для прогнозирования рынка евро/доллар 63
2.4.2. Классификация рыночных ситуаций 76
2.4.3. Оценка положения текущей цены в коридоре будущих котировок 80
2.4.4. Оценка достижимости ценой значимых уровней 82
2.4.5. Прогнозирование максимального и минимального уровней цены на один период вперед 85
2.4.6. Выводы 87
2.5. КОНЦЕПТУАЛЬНАЯ СХЕМА СИСТЕМЫ ПРОГНОЗИРОВАНИЯ 89
ЗАКЛЮЧЕНИЕ 96
СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ 98
ПРИЛОЖЕНИЯ 102
Выбор периода и горизонта прогнозирования обычно диктуется условиями принятия решений в области, для которой производится прогноз. Для того чтобы прогнозирование имело смысл, горизонт прогнозирования должен быть не меньше, чем время, необходимое для реализации решения, принятого на основе прогноза. Таким образом, прогнозирование очень сильно зависит от природы принимаемого решения. В некоторых случаях, время, требуемое на реализацию решения, не определено, например, как в случае поставки запасных частей для пополнения запасов ремонтных предприятий. Существуют методы работы в условиях подобной неопределенности, но они повышают вариацию ошибки прогнозирования. Поскольку с увеличением горизонта прогнозирования точность прогноза, обычно, снижается, часто можно улучшить процесс принятия решения, уменьшив время, необходимое на реализацию решения и, следовательно, уменьшив горизонт и ошибку прогнозирования.
Интервал прогнозирования
Хотя различие не велико, особо хочется обратить внимание на различие между данными за период и точечными данными. Данные за период характеризуют некоторый период времени. Например, средняя цена и частота котировок валюты за сутки характеризуют период времени. Точечные данные представляют значение переменной в конкретный момент времени, например, последняя котировка валюты на конец суток. Различие между этими двумя типами данных важно в основном для выбора используемой системы сбора данных, процесса измерений и определения ошибки прогнозирования.
Третьим аспектом прогнозирования является требуемая форма прогноза. Обычно при прогнозировании проводится оценка ожидаемого значения переменной, плюс оценка вариации ошибки прогнозирования или промежутка, на котором сохраняется вероятность содержания реальных будущих значений переменной. Этот промежуток называется предсказуемым интервалом.
В некоторых случаях не так важно предсказание конкретных значений прогнозируемой переменной, как предсказание значительных изменений в ее поведении. Такая задача возникает, например, при предсказании момента, когда текущее направление движения рынка (тренд) изменит свое направление на противоположное.
Точность прогноза, требуемая для конкретной проблемы, оказывает огромное влияние на прогнозирующую систему. Важнейшей характеристикой системы управления является ее способность добиваться оптимальности при работе с неопределенностью.
До сих пор, обсуждался набор проблем, связанных с процессом принятия решения. Существует ряд других факторов, которые также необходимо принимать во внимание при рассмотрении проблемы прогнозирования. Один из них связан с процессом, генерирующим переменную. Если известно, что процесс стабилен, или существуют постоянные условия, или изменения во времени происходят медленно - прогнозирующая система для такого процесса может достаточно сильно отличаться от системы, которая должна производить прогнозирование неустойчивого процесса с частыми фундаментальными изменениями.
В первом случае, необходимо активное использование исторических данных для предсказания будущего, в то время как во втором - лучше сосредоточиться на субъективной оценке и прогнозировании для определения изменений в процессе. Другой фактор - это доступность данных. Исторические данные необходимы для построения прогнозирующих процедур; будущие наблюдения служат для проверки прогноза. Количество, точность и достоверность этой информации важны при прогнозировании. Кроме этого необходимо исследовать представительность этих данных.
Необходимо также отметить вычислительные ограничения прогнозирующих систем. Если для решения задачи достаточно прогнозирования небольшого количества переменных и эти прогнозы выполняются редко, то в системе возможно применение более глубоких процедур анализа. В случае же необходимости частого прогнозирования большого числа переменных, можно большое внимание уделить разработке эффективного управления данными.
И, наконец, два важных фактора проблемы прогнозирования - возможности и интерес людей, которые делают и используют прогноз. В идеале, историческая информация анализируется автоматически, и прогноз предоставляется аналитику для возможной модификации. Введение эксперта в процесс прогнозирования является желательным и очень важным. Далее прогноз передается аналитикам, которые используют его при принятии решений.
Статистические методики включают в себя проверенные классические методы - регрессионный, корреляционный анализ и т.п. Однако работа с подобными системами для прогноза оперативно меняющейся внутридневной информации для неспециалиста (человека без образования в области статистики) сопряжена с некоторыми трудностями, как при выборе метода анализа, так и при трактовке результатов. Это представляется довольно существенным недостатком, поскольку скорость прогноза внутридневного хода торгов очень важна.
Эволюционное программирование - сегодня является довольно динамично развивающимся направлением анализа данных. Идеей метода является запись предварительных гипотез на некотором внутреннем языке программирования. Далее система находит программу, максимально точно выражающую искомую зависимость, и начинает самостоятельно ее корректировать, после чего из множества модифицированных программ отбирает наиболее удачную. При всей перспективности методики оперативный прогноз не является ее сильной стороной, да и программная реализация эволюционного программирования пока еще не совершенна.
"Деревья решений" - метод весьма условно может быть отнесен к системам прогноза быстро меняющихся финансовых показателей, являясь скорее системой классификаций. Однако для анализа оперативных финансовых потоков малопригоден.
Генетические алгоритмы - этот метод весьма успешно используется для решения комбинаторных задач, а также задач поиска оптимальных вариантов. Кратко схему метода можно описать как выбор лучших решений по ранее формализованным критериям, при этом процесс оптимизации напоминает естественную эволюцию - отбор лучших, скрещивание и мутации. Но у метода есть ряд недостатков, например сложность формализации критериев отбора. Кроме того, в целом методика оптимизирована на класс задач, несколько отличающийся от прогноза оперативно меняющихся финансовых показателей.
Сегодня все больше операторов используют в своей деятельности искусственные нейронные сети. Сама нейросеть, как правило, представляет собой многослойную сетевую структуру однотипных элементов - нейронов, соединенных между собой и сгруппированных в слои. Среди прочих слоев имеется входной слой, на нейроны которого подается информация, а также выходной, с которого снимается результат. При прохождении по сети входные сигналы усиливаются или ослабляются, что определяется весами межнейронных связей. Перед применением нейросеть необходимо обучить на примерах - с помощью коррекции весов межнейронных связей, т.е. по известным входным параметрам и результату сеть заставляют выдавать ответ, максимально близкий к правильному. Проблему оценки постоянно изменяющихся внешних условий и соответственно степени влияния на рынок тех или иных параметров нейросеть решает в силу самого принципа работы.
Еще один метод, который используется
для решения задач
Фундаментальные факторы являются ключевыми макроэкономическими показателями состояния национальной экономики, действующими в среднесрочной перспективе, воздействующими на участников валютного рынка и уровень валютного курса. Агентство Рейтер публикует специальную страницу прогноза основных экономических индикаторов развитых стран. Обычно это данные макроэкономической статистики, публикуемые национальными статистическими органами.
Отмечено, что на мировых валютных рынках, где 80% арбитражных операций проводятся с американским долларом, наибольшее влияние имеют данные по экономике США, что приводит к повышению или понижению курса доллара по отношению к остальным валютам.
Трейдеры, принимающие решения о покупке или продаже валюты, после появления на экранах мониторов сообщений о значении того или иного экономического индикатора, должны мгновенно ответить на ряд вопросов, от правильного решения которых зависит размер полученной прибыли или убытка. Появившиеся цифры могут быть такими, как ожидал рынок, или, наоборот, неожиданные. Поскольку трейдеры знают предварительный прогноз экономического показателя, в первую секунду после его публикации они сравнивают прогноз и реальное значение. В случае совпадения спрогнозированного и реального значения показателя сильного движения валюты, как правило, не происходит. Вышедшие данные могут быть положительными или отрицательными. Положительные данные приводят к росту курса валюты, отрицательные, наоборот, к его снижению. Принимается во внимание также показатель, учитывающий сезонную цикличность.
Выделяют следующие основные фундаментальные факторы: валютный курс по паритету (Purchasing Power Parity Rate - PPP Rate), валовой национальный продукт - ВНП (Gross National Product - GNP), уровень реальных процентных ставок (Real Interest Rate), уровень безработицы (Unemployment Rate), инфляция (Inflation), платежный баланс (Balance of Payment), индекс промышленного производства (Industrial Production), индекс главных показателей (Leading Indicators Index - LEI), индекс делового оптимизма.
Для трейдера универсальным правилом открытия позиции должно являться ориентирование на ожидания и настроения большинства участников рынка. Это достигается путем анализа ситуации по публикациям, при изучении обзоров состояния рынка в информационных системах, обмена мнениями с другими трейдерами. Таким образом, задача трейдера состоит в том, чтобы присоединиться к движению курса, продиктованному большинством участников рынка - "вскочить в лодку".
Технический анализ - это общепринятый
подход к изучению рынка, имеющий
целью прогнозирование движения
валютного курса и
Объектом исследования в техническом анализе являются графики, отображающие поведение цен. Современные компьютерные системы технического анализа поддерживают следующие основные типы графиков - линейные, столбиковые, японские свечи и пункто-цифровые графики ("крестики-нолики").
В техническом анализе принято выделять на графиках определенный набор типовых элементов, на основе которых строится описание поведения графиков. Это, прежде всего, линия тренда, указывающая направление и темп роста/падения цен, канал - диапазон колебаний цены (курса валюты). Из этих элементов составляются так называемые фигуры: треугольник, клин, "голова и плечи", двойной верх и двойное дно, вымпелы, флаги и другие, являющиеся для трейдеров ориентирами в построении прогнозов будущего поведения рынка. С помощью компьютеров можно осуществлять математическую обработку графиков, получая дополнительную информацию для выявления тенденций рынка. В математическом обеспечении современных информационных систем заложена возможность автоматизации построения нескольких десятков статистических показателей динамики цен (индикаторов). Построение графиков таких индикаторов и их анализ совместно с графиками движения валютного курса дает трейдеру много полезной информации для принятия решений.
Технический анализ представляет собой некоторый набор подходов и методов к построению прогнозов движения рыночных цен на основе наблюдений за прошлым поведением рынка. Основные принципиальные предпосылки (аксиомы), на которых основан технический анализ, принято формулировать в виде следующих трех постулатов.
Рынок учитывает все. Иначе говоря, цена является и следствием и исчерпывающем отражением всех движущих сил рынка.
Движение цен подчинено
История повторяется. "Ключ к пониманию будущего кроется в изучении прошлого". То, что определенные конфигурации на графиках цен имеют свойство появляться устойчиво и многократно, причем на разных рынках и в разных масштабах времени, является следствием действия некоторых стереотипов поведения, свойственных человеческой психике.
Таким образом, можно сказать, что обоснование работоспособности методов технического анализа кроется в особенности психологии людей и существовании стереотипов их поведения на рынке. Приблизительно одинаковый набор факторов, влияющих на принятие решений о покупке и продаже валюты, приводит каждый раз к сходному результату - появлению повторяющихся закономерностей движения курса.
Информация о работе Прогнозирование финансовых рынков с использованием искусственных нейронных сетей