Автор: Пользователь скрыл имя, 01 Июня 2015 в 18:51, реферат
Цель работы заключается в анализе возможности использования нетрадиционных энергоресурсов в России и мире.
Для достижения указанной цели необходимо решить ряд задач:
1.Рассмотреть классификацию возобновляемых источников энергии
2.Провести литературный обзор;
3.рассмотреть виды ВИЭ и возможности их развития в мире и России;
В настоящее время лидерами по выработке гидроэнергии являются Норвегия, Китай, Канада, Россия. Лидером по количеству энергии воды на душу населения является Исландия.
1.4 Гелиоэнергетика
Солнце - один из самых источников излучения в нашей Вселенной. И поэтому не случайно энергия звезды все больше используется человеком для переработки в электричество. Действительно, излучение Солнца, доходящее до всей поверхности Земли, имеет колоссальную мощность 1,2*1014 кВт. И иногда очень обидно, что огромная часть этой энергии пропадает зря, особенно если она по своему количеству в разы превосходит ресурсы всех остальных ВИЭ вместе взятых. Поэтому в последние годы все активнее развивается гелиоэнергетика, в которой используется солнечная радиация для получения электричества.
Первые зачатки гелиоэнергетики появились в середине 19 века. Первооткрывателями стали ученые Адамс и Дей, которые впервые провели эксперимент с твердотельными фотоэлектрическими элементами на основе селена. Однако прошло более 50-ти лет, чтобы их открытие переросло во что-то большее. Основой для создания первых солнечных батарей послужила разработка теории полупроводниковых материалов с p-n переходом. В этой методике используются атомы кремния. Суть всей технологии заключается в том, что при повышении температуры молекулы кремния за счет нагревания солнечной энергией, тепловые колебания кристаллической решетки приводят к разрыву некоторых валентных связей. В результате этого часть электронов, ранее участвовавших в образовании валентных связей, отщепляется и становится электронами проводимости. При наличии электрического поля они перемещаются против поля и образуют электрический ток.
Однако с помощью солнечного
тепла можно не только получать ток, но
обеспечивать теплопроводность. Такое возможно благодаря
солнечным коллекторам, в которых нагревается
вода при помощи солнечной радиации. И теперь она может использоваться для
обогрева каких-либо сооружений.
Также как и в ветроэнергетике,
для гелиостанций очень важно правильно
выбрать место для их постройки. Не следует забывать, что солнечные лучи,
прежде чем достигнуть поверхности Земли,
преодолевают множество преград. Прежде
всего, к ним можно отнести атмосферу,
а в особенности озоновый слой. Именно
благодаря ему на Земле вообще возможна
жизнь, ведь он не пропускает вредное для
всего живого ультрафиолетовое излучение.
Также немаловажную роль играют содержащиеся
в атмосфере частицы водяного пара, пыли,
примесей газов и другие аэрозоли. Они
частично рассеивают радиацию.
В целом, поступление радиации на земную поверхность зависит от:[10]
Общее излучение, доходящее до Земли подразделяется на:
На основе этих величин составляется суммарный радиационный баланс земли, по которому определяются наиболее удачные места для расположения гелиостанций.
Классифицировать их можно по: [6]
1) Виду преобразования солнечной энергии в другие ее виды - тепло или электричество
2) Концентрированию энергии - с концентраторами
или без них
3) Технической сложности - простые и сложные
К простым установкам относят опреснители, нагреватели воды, сушилки, печные нагреватели ит.д.
К сложным относятся установки, которые преобразуют поступившую солнечную энергию в электрическую путем фотоэлектрических приборов.
Тепловые гелиостанции в основном используются для нагрева воды и воздуха. Также солнечное тепло используется для различных печей и зерносушек, а также в солнечных дистилляторах, которые могут вырабатывать чистейшую пресную воду.
В термоэлектрических преобразователях солнечная энергия используется для возникновения эффекта Зеебека. Он заключается в том, что если два различных проводника, соединенных последовательно, содержать в разных температурных средах, то в них появляется электродвижущая сила. Следовательно, вырабатывается ток. Солнечная радиация применяется для того, чтоб создать разность температур. Обычно, ею нагревается «горячий» проводник. Обычно, такие установки применяются как автономные источники питания.
Концентраторами солнечной энергии являются параболовидные агрегаты, сделанные обычно из стекла или полированного металла. Их значение заключается в том, чтобы «ловить» солнечные лучи и отражать их в солнечный коллектор.
Одним из лидеров использования солнечной энергии является Швейцария. В данный момент в стране эффективно развивается программа по строительству гелиостанций. Также идет тенденция на производство солнечных батарей, устанавливающихся на крыши зданий или как фасады. Такие установки могут компенсировать 50…70% энергии, затрачиваемой на производство
1.5 Энергия биомассы
К биомассе относятся все вещества органического происхождения.
Что же можно применить в качестве источника энергии?
2. Состояние и перспективы возобновляемых природных источников энергии в мире и в России
2.1 Ветроэнергетика в мире и России
Установленная мощность ВУ в Европе в 1990 г. составляла 324 МВт, наибольшая часть в Дании. По оценкам экспертов мощность ВЭС к 2008 г. в Европе составит 4860 МВт.[10] Главными производителями ВУ в Европе являются Дания, Великобритания, Германия и Бельгия. Дания является ведущей страной в мире по производству и экспорту ВУ, в том числе и в США. По неофициальным данным к 2010 г. в Дании за счет ВЭУ будет произведено до 10% вырабатываемой в стране электроэнергии.
В Германии к 2010г. общая мощность ВЭС по оценкам составит 500 МВт с выработкой 0,2% электропотребления страны. Лидером ветроэнергетики в Германии в последние годы является фирма «Enercon», выпустившая в 2000 году 27% всего объема продукции ветроэнергетики страны.
В Нидерландах освоение ВУ начато с 1976 г. Ветроэнергетической программой предусматривается увеличение действующих мощностей ВУ с 100... 150 МВт (1990 г.) до 1000 МВт (2008 г.), что позволит получить 4...7% от общего энергопотребления. Не стоят на месте голландские производители. Фирма «Enron Wind» установила в Швеции несколько ВЭУ собственного производства.
В Великобритании энергия ветра признана одним из перспективных источников. Правительственной программой по ветроэнергетике предусмотрено увеличить мощность ВЭУ к 2008 г. до 600 МВт, получить в 2008 г. за счет энергии ветра 10% потребляемой в стране электроэнергии, далее довести этот показатель до 20%.
Не отстают от Европы и азиатские страны. Например, в Индии было создано Министерство нетрадиционных источников энергии, которое осуществляет разработку отрасли в целом, планирование инвестиций и меры экономического развития. В настоящее время несколько крупных индийских компаний, таких как «Micon», «Vestas», «Zond» и другие заняты сборкой и производством ВЭУ.
Основу мировой ветровой энергетики составляют ВЭУ, работающие на сети энергосистем. Их доля составляет 99% от суммарной мощности действующего ветроэнергетического парка. Это объясняется тем, что для работы таких установок не требуются дополнительные источники питания.
Доля ВЭУ, применяемых в качестве автономных источников едва превышает 1%. Это объясняется тем, что автономные ВЭУ имеют малую мощность при большое цене. Также, на отдельные ВЭУ не распространяются налоговые льготы государств, поэтому это делает их нерентабельными.
В России допущено наибольшее отставание от передовых достижений зарубежных стран в области освоения ВИЭ именно в ветровой энергетике. В дореволюционной России действовало более 20 тысяч ветряных мельниц общей мощностью 1 млн.кВт.
В настоящее время в РФ выпускаются серийно только агрегаты типа АВЭЦ-6-4М мощностью 2...4 кВт. Кроме того, освоено мелкосерийное производство зарядных ВЭА мощностью 100...250 Вт и водоподъемные ВА с механическим приводом производительностью 1 м3/ч (воды). За последние годы (8 лет) введено в эксплуатацию около 10 тысяч ВУ такого типа. Оценка ресурсов ветроэнергетики показывает, что для энергетического использования пригодны около 8 млн.км2 территории, где среднегодовая скорость ветра превышает 5 м/с. Если использовать только 1% территории для размещения ВЭУ, то их установленная мощность может превысить 300 млн. кВт.[6]
Тормозом развития, внедрения и широкомасштабного использования ветроэнергетики в России является целый ряд причин.
Основные из них -- отсутствие государственной позиции и, как следствие, неопределенность государственных целей и приоритетов. До сих пор в стране не приняты общегосударственные и региональные программы развития ветроэнергетики и не созданы государственные органы управления на федеральном и региональном уровнях.
Законодательные барьеры обусловлены отсутствием законов и механизмов, регулирующих развитие и внедрение ВИЗ, а также нормативов, обеспечивающих свободный доступ независимых производителей к электросетям энергосистем.
Экономические барьеры связаны с отсутствием госфинансирования, низкой платежеспособностью населения и организаций, с отсутствием экономических стимулов для вложения инвестиций (налоговых льгот, льготных кредитов) и гарантий возврата вложенных средств.
Научно-технические и профессиональные барьеры обусловлены отсутствием по большинству видов ВИЭ готовых систем энергоснабжения и системы сертификации оборудования, неразвитостью инфраструктуры и ремонтно-эксплуатационной базы, отсутствием квалифицированных кадров, низким уровнем технологических разработок и научно-информационного сопровождения проектов.
Информационные барьеры связаны со слабой осведомленностью населения, руководства и общественности о возможностях, преимуществе и эффективности использования ВЭС и с отсутствием системы пропаганды в СМИ.
Существенным барьером для широкомасштабного внедрения ВЭС является необоснованное мнение об их экономической неэффективности, по крайней мере, в РФ с ее запасами органических, ядерных и водных энергоресурсов.
Но если посмотреть с другой стороны, то в нашей стране есть существенные предпосылки для развития этого вида энергетики, которые обусловлены:
2.2 Состояние и перспективы мировой гидроэнергетики
Объем генерирующих мощностей ГЭС по всему миру неуклонно рос в среднем на 3 процента ежегодно в течение последних четырех десятилетий. Согласно последним данным специалистов Института политики Земли, в 2011 году ГЭС вырабатывали 3.5 трлн. киловатт-часов электричества. На гидроэнергетику пришлось около 16 процентов мирового производства электроэнергии. Почти все генерирующие мощности сконцентрированы на 45 000 с лишним крупных плотинах. Сегодня гидроэнергетика развита и широко используется в более чем 160 странах мира.
Сейчас крупнейшими производителями гидроэнергии в абсолютных значениях являются Китай, Канада, Бразилия, США и Россия. Однако абсолютный лидер по выработке гидроэнергии на душу населения - Исландия. Кроме нее, этот показатель наиболее высок в Норвегии (доля ГЭС в суммарной выработке - 98 процентов), Канаде и Швеции.
Стоит отметить, что в развитых странах Европы и Америки практически исчерпаны возможности для строительства новых ГЭС. Так что смело можно прогнозировать, что новые большие ГЭС будут строить в основном в Африке, Азии и Южной Америке, так как на других континентах, везде, где только можно построить большую ГЭС, они уже стоят.
Эти выводы подтверждаются тем, что крупнейшие ГЭС мира находятся именно в этих регионах. Так, именно в Азии, в Китае, располагается крупнейшая ГЭС мира «Три ущелья» на реке Янцзы. Мощность этой станции составляет 22,4 ГВт. Кроме того, в Китае ведется строительство крупнейшего по мощности каскада ГЭС. Вторая по величине гидроэлектростанция в мире называется «Итайпу» и стоит на реке Парана, на границе Бразилии и Парагвая. Ее мощность - 14 ГВт. Наконец, «тройку призеров» замыкает гидроэлектростанция имени Симона Боливара, или «Гури», в Венесуэле, на реке Карони. Ее мощность - 10,3 ГВт.
Однако все эти достижения инженерной мысли меркнут перед ГЭС «Гранд Инга». Эта гидроэлектростанция, мощность которой составит 39 ГВт, планируется к сооружению международным консорциумом на реке Конго в Демократической Республике Конго (бывший Заир). У «Гранд Инга» будут пятьдесят две гидротурбины по 750 МВт каждая, плотина высотой 150 метров, будет использоваться часть потока скоростью 26 400 кубометров в секунду. В случае успеха проекта «Гранд Инга» вдвое превзойдет «Три ущелья».
Но все это касается крупных станций. Не стоит забывать и о развитии малых ГЭС, которые по темпу своего развития могут поспорить с их «старшими собратьями». Хотя их удельная мощность не столь велика, все же они играют неоценимую роль в локальном обеспечении человека электричеством.
Строительство микро ГЭС имеет широкие перспективы развития в различных регионах мира с трансграничными речными бассейнами. Малая гидроэнергетика свободна от многих недостатков крупных ГЭС и признана одним из наиболее экономичных и экологически безопасных способов получения электроэнергии, особенно при использовании небольших водотоков.