Решение задач по экономике

Автор: Пользователь скрыл имя, 27 Февраля 2013 в 15:17, контрольная работа

Краткое описание

Оформите в табличном виде следующие данные.
Промежуточный минимум населения (в расчете на душу населения) возрос с 20,6 (1996г) до 86,6 тыс.руб/мес. За этот же период прожиточный минимум возрос: трудоспособного населения с 23,1 до 97,4 тыс.руб/мес., пенсионеров с 14,4 до 61,0 тыс.руб/мес., детей с 20,7 до 87,4 тыс.руб/мес. Соотношение среднедушевого денежного дохода и прожиточного минимума населения увеличилось с 213 до 234%. Сформулируйте название таблицы, укажите ее подлежащее и сказуемое.

Файлы: 1 файл

Решение задач.doc

— 316.50 Кб (Скачать)

Задание 1

Оформите в  табличном виде следующие данные.

Промежуточный минимум населения (в расчете  на душу населения) возрос с 20,6 (1996г) до 86,6 тыс.руб/мес. За этот же период прожиточный  минимум возрос: трудоспособного населения с 23,1 до 97,4 тыс.руб/мес., пенсионеров с 14,4 до 61,0 тыс.руб/мес., детей с 20,7 до 87,4 тыс.руб/мес. Соотношение среднедушевого денежного дохода и прожиточного минимума населения увеличилось с 213 до 234%. Сформулируйте название таблицы, укажите ее подлежащее и сказуемое.

Решение:

Таблица - Соотношение  денежных доходов населения с величиной прожиточного минимума

Показатели

1996г

2012г

Прожиточный минимум, тыс.руб.

20,6

86,6

в том числе:

   

Трудоспособное население, тыс.руб.

23,1

97,4

Пенсионеры, тыс.руб.

14,4

61,0

Дети, тыс.руб.

20,7

87,4

Соотношение среднедушевого денежного дохода и прожиточного минимума населения, процент 

213

234

 

- подлежащее  таблицы

 

- сказуемое  таблицы


 

Основными элементами статистической таблицы являются подлежащее и сказуемое таблицы.

Подлежащее  таблицы — это объект статистического изучения, то есть отдельные единицы совокупности, их группы или вся совокупность в целом.

Сказуемое таблицы  — это статистические показатели, характеризующие изучаемый объект.

 

Задание 2

Статья  затрат

Общие затраты, млн.руб

Сырье и материалы

33

Топливо и энергия

13

Оплата труда

4

Амортизация

10

Прочие расходы

40


Вычислить относительные  показатели и координации

Решение:

Относительный показатель структуры представляет собой соотношение структурных частей изучаемого объекта и их целого:

                     (2.1)

Необходимо  рассчитать общую статью затрат:

Затраты= Сырье  и материалы + Топливо и энергия + Оплата труда + Амортизация + Прочие расходы

Затраты =33+13+4+10+40 =100 млн.руб

Зная показатель по всей совокупности в целом, равный 100 млн.руб., можно рассчитать ОПС по формуле 2.1.

Статья  затрат

Общие затраты, млн.руб

ОПС,%

Затраты, млн.руб

100

100

в том числе:

   

Сырье и материалы

33

33

Топливо и энергия

13

13

Оплата труда

4

4

Амортизация

10

10

Прочие расходы

40

40


 

Относительный показатель координации представляет собой отношение одной части совокупности к другой части этой же совокупности:

                  (2.2)

 

При этом в качестве базы сравнения выбирается та часть, которая имеет наибольший удельный вес или является приоритетной с экономической, социальной или какой-либо другой точки зрения. В результате получают, во сколько раз данная часть больше базисной или сколько процентов от нее составляет, или сколько единиц данной структурной части приходится на 1 единицу (иногда - на 100, 1000 и т.д. единиц) базисной структурной части. 

В качестве базы сравнения будет выступать статья затрат «Сырье и материалы», так как является приоритетной с экономической точки зрения. Можно рассчитать ОПК по формуле 2.2.

Статья затрат

Общие затраты, млн.руб

ОПК

Сырье и материалы

33

 

Топливо и энергия

13

0,39

Оплата труда

4

0,12

Амортизация

10

0,30

Прочие расходы

40

1,21


 

На каждый рубль  затрат на сырье и материалы приходится 0,39 руб. (13/33) затрат на топливо и энергию. На каждый рубль затрат на сырье и материалы приходится 0,12 руб. (4/33) затрат на оплату труда. На каждый рубль затрат на сырье и материалы приходится 0,30 руб. (10/33) затрат на амортизацию. На каждый рубль затрат на сырье и материалы приходится 1,21 руб. (40/33) затрат на прочие расходы.

 

 

 

 

Задание 3

Себестоимость единицы одноименной продукции  по предприятиям отрасли характеризуется  следующими показателями:

Группы  предприятий по себестоимости единицы  продукции, руб

Число продукции

160-200

2

200-240

3

280-320

5

320-360

7

360-400

10

Итого:

27


Требуется определить моду и медиану себестоимости  единицы продукции в целом  по совокупности.

Решение:

Мода - это наиболее часто встречающееся значение признака у единиц данной совокупности. Она  соответствует определенному значению признака.

Медианна –  это вариант расположения в середине упорядоченного ряда распределения  делящий его на две равные части  таким образом, что половина единиц совокупности имеет значение меньше чем медиана, а половина больше чем  медиана, то есть медиана лежит в середине ранжированного ряда и делит его пополам.

Для точного  расчета моды используют следующую формулу:

Где XMo – минимальное значение модального интервала;

i – размер модального интервала;

f – частота модального интервала;

fMо – 1 – частота интервала стоящего перед модальным;

fMо + 1 – частота интервала стоящего после модального.

Модальный интервал – это интервал имеющий большую частоту (частость). В нашем случае модальным интервалом будет значение 360 – 400.

 

Расчет моды:

Мо=  

Можно определить точное значение медианы в медианном ряду используя следующую формулу:

 

Где XMe – минимальное значение медианного интервала;

iMe – размер медианного интервала;

fMe – частота медианного интервала;

½Σf – полусумма  всех частот ряда;

SMe – 1 – сумма накопленных частот до частот медианного интервала.

Медианным интервалом – называют интервал, в котором  находится порядковый номер медианы.

В нашем случае число членов ряда состоит из 5 пунктов, тогда медиана расположена в третьем ряду.

 

Расчет медианы:

Ме= =348руб.

Ответ: мода= 369,23руб., медиана = 348руб. 

 

Задание 4

Имеются следующие  данные о заработной плате рабочих  завода:

номер цеха

средняя заработная плата, тыс.руб

фонд заработной платы, тыс.руб

1

9,2

230

2

11

440

3

12,8

282

4

13,7

205


Требуется  определить среднюю заработную плату в целом  по заводу.

Решение:

  1. Определить количество рабочих в каждом цехе по формуле:

Число рабочих =                         (4.1)

Цех1 = 230/9,2 = 25чел

Цех2 = 440/11 = 40чел

Цех3 = 282/12,8 = 22чел

Цех4 =  205/13,7 = 14чел

  1. Определить общее количесвто рабочих завода:

Рабочие = 25+40+22+14= 101чел

  1. Определить среднюю заработную плату в целом по заводу по формуле:

Средняя заработная плата=                (4.2)

Средняя заработная плата= =11,46тыс.руб.

Ответ: 11,46 тыс.руб.

 

Задание 5

Имеются следующие данные о тарифных разрядах 50 рабочих:

5  2  3  1  1  4  2  3  5  4  6  1  2  4  5  6  4  2  3  4  2  3  5  6  4  5  2  3  1  6  4  2  8  2  1  4  5  6  1  2  3  5  2  4  6  5  2  1  4  3

Требуется построить  ряд распределения рабочих по тарифному разряду, построить график распределения  рабочих по тарифному  разряду.

Решение:

Ряд распределения  имеет вид:

Тарифный разряд, x

Число рабочих, f

Накопленная частота

1

7

7

2

11

18

3

7

25

4

10

35

5

8

43

6

6

49

8

1

50

Итого:

50

-


 

 

 

 

 

 

 

 

 

 

 

Вариационный ряд в виде полигона частот:

 

 

 

 


Информация о работе Решение задач по экономике