Автор: Пользователь скрыл имя, 22 Ноября 2012 в 12:53, контрольная работа
Решение задач математического программирования, которые могут быть представлены в виде многошагового (многоэтапного) процесса, составляет предмет динамического программирования. Вместе с этим динамическим программированием называют особый математический метод оптимизации решений, специально приспособленный к многошаговым процессам. Многошаговым обычно считают процесс, развивающийся во времени и распадающийся на ряд «шагов», или «этапов». Однако метод динамического программирования используется и для решения задач, в которых время не фигурирует. Некоторые процессы распадаются на шаги естественно (например, процесс планирования хозяйственной деятельности предприятия на отрезок времени, состоящий из нескольких лет); многие процессы можно разделить на этапы искусственно.
Понятие динамического программирования………………………..……....……3
Принцип оптимальности Беллмана………………………………………….……5
Практическое применение динамического программирования……………..…6
Заключение…………………………………………………………………….…..11
Список литературы………………………………………………………………..12
Заметим, что на первом этапе нами выбран маршрут 1- 3 доставки груза, по которому затраты в 2,5 раза превышают затраты на маршруте 1 – 2 и в 5 раз на маршруте 1 – 4. Оказалось, что с точки зрения всего четырехэтапного маршрута, а не одного первого этапа, следует пойти на «жертву» на первом этапе с тем, чтобы минимизировать общие затраты на всем четырехэтапном маршруте. Это иллюстрирует одну из главных особенностей метода: выбирать решение на каждом шаге, руководствуясь не выгодой, получаемой на данном шаге, а общей выгодой, получаемой по окончании всего процесса.
Примененный метод рассуждения не только позволил найти оптимальный маршрут доставки груза из пункта 1 в пункт 10, но и всю структуру оптимальных маршрутов относительно пункта 10 для данной сети дорог. Например, наиболее экономный маршрут доставки груза из пункта 4 в пункт 10 пройдет через пункты 7 и 9. Этот факт для практических нужд часто более ценен, чем нахождение только одного оптимального маршрута (рис. 3).
рис. 3
Заключение.
Реальные экономические процессы весьма сложны. При их математическом описании приходится учитывать множество различных факторов. Применение методов математического программирования для решения теоретических и практических задач экономики важно для более рационального, оптимального использования, имеющихся ресурсов. Математическое моделирование экономических процессов и явлений является наиболее совершенным и вместе с тем наиболее эффективным методом исследования, ибо в этом случае появляется возможность широкого использования современных средств математического анализа.
Рассмотренный метод динамического программирования в практическом применении имеет как недостатки, так и преимущества. Отметим, что методом динамического программирования можно решать даже те задачи, которые не могут быть решены методами математического анализа. Однако он связан с большой вычислительной работой, в связи с этим метод непосредственно может быть применен к экономическим задачам, включающим не более 3 – 4 видов ресурсов.
Список литературы:
1. Баканов М.И., Шеремет А.Д. Теория экономического анализа: Учебник. – 4-е изд., доп. и перераб. – М.: Финансы и статистика, 1999
2. Браславец М.Е. Экономико-
3. Кравченко Р.Г., Попов И.Г., Толпекин С.З. Экономико-математические методы в организации и планировании сельскохозяйственного производства, 1974
4. Кузнецов А.В., Холод Н.И. Математическое программирование: [ Учеб. Пособие для эконом. спец. вузов]. – Мн.: Выш. шк., 1984. – 221 с., ил.
5. Кузнецов Ю. Н.
и др. Математическое
Информация о работе Динамическое программирование. Принцип оптимальности Беллмана