Автор: Пользователь скрыл имя, 10 Марта 2013 в 18:42, курсовая работа
Кондуктометрия электролиттердің концентрациясын кондуктометрлік әдіспен анықтау талданатын ерітіндінің электр өткізгіштігін өлшеуге негізделген. Кондуктометрия - ең қарапайым және талдап сұрыптаудың электрохимиялық әдісі. Кондуктометрлік әдістердің барлығы жылдамдығымен, өлшеуіш аспаптарының оңай табылуымен, жұмысының ыңғайлылығымен, қанағаттанарлық дәлдігімен, өндірістік, технологиялық және лабораториялык жағдайларда талдауды автоматты түрде, әрі қашықтықтан жүргізу мүмкіндігімен сипатталады
КІРІСПЕ
Кондуктометрия электролиттерді
Тікелей кондуктометрлік анықтаудын қателігі - 1-2 %. Ал белгілі бір арнайы жағдайды сақтағанда талдау қателігі 0.2 %-ке дейін азаяды. Кондуктометрлік ұяшықтарды термостатсыз өлшегенде, бұл қателіктер 3 %-ке артады, өйткені температураның бір градусқа жоғарылауы электр өткізгіштікті 2 не 3 проценттей өзгертеді. Демек, ерітінділерді термостаттау кондуктометрлік талдау әдісінің дәлдігін арттырады.
Кондуктометрияның теориялық негізі
Кондуктометрияның
теориялық негізі. Электролит е
I = Е / R
мұндағы I - ток күші, Е - потенциал айырымы, R - кедергі.
Кондуктометрияда өлшенетін шама ерітіндінің кедергісі немесе электр өткізгіштігі болуы мүмкін. Электр өткізгіштігінің бірлігі - кедергісі 1 Ом өткізгіштің өткізгіштік қабілеті.
Электролит ерітіндісінің электр өткізгіштігі - сыртқы кернеу көзі әсерінен заттың электролиттік диссоциациялануы және иондар қозғалуының нәтижесі. Электр тогы өрісінде ерітіндідегі қозғалған иондар еріткіш молекуласы және өзін қоршаған кері зарядталған иондар тарапынан тежеу осеріне ұшырайды. Бұл әсер релаксациялык және электрофореттік эффект деп аталады, ал бұл тежеудің нәтижесі ерітінді кедергісі болып табылады. Сөйтіп, ерітіндінін электр өткізгіштігі негізінен миграциялық иондардың санымен және жылдамдығымен (қозғалғыштығымен), оларды тасымалдайтын заряд санымен анықталады. Электр өткізгіштік температураға және еріген электролит пен еріткіштің табиғатына тәуелді.
Электролит арқылы ток
өткенде, оң зарядталған болшекіер
катодка (теріс зарядталған электродқа)
Электролит ерітіндісі - үш өлшемді өткізгіш. Ал кез келген ерітінді кедергісінің шамасы ұяшықтың құрамына, материалына, шамасына және электродтардың кеңістіктегі орналасуына тәуелді.
Барлық белгілі және табиғатта
кездесетін немесе қолдан жасалған өткізгішгер
олар арқылы электр тогы өткен кездегі
электрдің тасымалдану
Электрондық өткізгіштер. Мұнда өткізгіштердегі электрді тасымзлдаушылар - электрондар. Электрондық өткізгіштерге металдар, жартылай еткізгіштер, металл құймалары, көміртек және кейбір тұздар мен тотықтар жатады.
Иондық өткізгіштер. Мұндағы электр тасымалдауыштар - иондар. Өткізгіштердің бұл тобына газдар мен электролиттер, олардың ерітінділері жатады.
Аралас өткізгіштер әрі электрондық, әрі иондық қасиетке ие болады. Бұған сұйық аммиактағы сілтілік жер элементтердің ерітінділері, кейбір сұйық (балқыма) құймалар мен тұздар жатады. Мұндай өткізгіштердегі ток өткізу сипаты температураның белгілі бір аралықтарында өзгереді.
Электр өткізгіштікті өлшеуге арналған иондық немесе аралас ток өткізгіиі электролштерге мына заттардың типтері жатады: қатты күйдегі таза заттар (күміс, барий, қорғасын және металдардың галогенидтері); сұйық күйдегі заттар (су, спирттер, қышқылдар, т.б.); балқыған тұздар мен гидридтер: қатты және балқыма күйдегі бірнеше заттың ерітіндісі; сулы және сусыз, яғни анорганикалық және органикалық нағыз (молекулалық) және коллоидты ерітінділер; оксидтердің, тұздар мен негіздердің және кейбір жекеленген заттар ерітінділері.
Әр түрлі ерітінділердің электр өткізгіштігін салыстыру үшін менілікті электр өткізгіштігін пайдалану қолайлы, ол мына теңдеумен беріледі:
мұндағы I - ұзындығы өгкізгіштің көлденең кимасының ауданы. Менпіікті электр өткізгіштік дегеніміз - ауданы 1 м2, ара қашықтығы 1 м болатын өзара параллель орналасқан екі электрод арасындағы 1 м3 ерітіндінің өткізгіштігі.
Меншікті (к), эквивалентті (λ) және мольдік А электр өткізгіштік деп бөлінеді, соңғысында ерітіндінің меншікті электр өткізгіштігі оның мольдік концентрациясымен анықталады.
Жалпы электр өгкізгіштік электр тасымалдау процесіне қатынасатын әрбір ионның концентрация және ұяшық сияқты параметрлері арқылы өрнектеледі:
Шексіз сұйылтқандағы
катиондар мен аниондардың
Меншікті электр өткізгіштік ерітіндінің концентрациясы өскен сайын артып, өзінін ең жоғарғы шегіне жетеді де, содан кейін төмендейді. Ерітіндідегі электролит концентрациясының артуымен меншікті электр өткізгіштігінің артуы ерітіндідегі ион санының көбеюімен байланысты. Концентрацияланған ерітіндіде ионаралық өзара әсерлесу артады да. осының нэтижесінде ионаралық ассоциагтар немесе ион суы пайда болады, ток өткізгіштікті төмендететін ерітіндінің тұтқырлығы көбейеді; нондардың қозғалыс жылдамдықтарын азайтатын басқадай эффектілер туады. Осындай факторлар қосыла келіп, электр өткізгіштіктің қисығында максимум пайда болады.
Әдетте аналитикалық мақсат үшін осы қисықтың өсімді учаскесін пайдаланады, яғни ерітіндінщ орташа концентрация аймағы.
Алайда, меншікті электр өткізгіштік концентрацияға сандық тұрғыда тым бағынатындықтан, оның орнына эквиваленттік электр откізгіштікті пайдаланған орынды.
Сонымен, ерітіндінің эквиваленттік электр өткізгіштігі дегеніміз - беткі ауданы 1 см2, ара қашықтығы 1 см параллель орншіасқан екі электрод арасында, құрамында заттың 1 моль эквиваленті болатын ерітіндінің электр өткізгіштігі, ол см · см2/моль · экв бірлігімен өлшенеді. Әдетте, концентрациясы төмен болатын аймақта А ерітінді концентрациясы азайған сайын өсе түседі. Ал күшті электролитгер үшін, концентрация шамасы < 10-3 моль/л, ол келесі теңдеумен өрнектелінеді:
Ерітінді концентрациясының
өсуімен эквиваленттік электр өткізгіштіктің
төмендеуі Дебай-Хюккель-
мұндағы А мен В - электрофореттік және релаксациялық эффектілерді сипаттайтын коэффициенттер, олардың шамасы ерітіндідегі температураға, тұтқырлыққа, диэлектрлікке тэуелді, әрі теориялық тұрғыда есептелінеді.
Шекті эквивалентті электр өткізгіштік иондардың шекті электр өткізгіштіктерінің қосындысына (немесе иондардың қозғалғыштығына) тең:
Бұл тендеуді Ф. Кодьрауш (1879
жылы) заңы, кейде иондардың тәуелсіз
қозғалу заңы дейді. Қалыпты жағдайда
су ерітіндісіндегі иондардын
Әлсіз электролиттердің электр
өткізгіштігінің
Әлсіз электролиттің электр өткізгіштігін пайдаланып, оның диссоциация түрақтысын есептейді.
Сусыз ерітінділердегі электр
өткізгіштіктің бірқатар ерекшеліктері
бар. Диэлектрлік өтімділігі жоғары
болатын органикалық
Кондуктометрлік әдістердін жіктелуі
Кондуктометрлік
әдістердін жіктелуі. Тура және жанама
кондуктометрия. Талдаудың кондукто метрлік
әдістерін қолдану ауқымына қарай үш топқа
бөлуге болады: таза заттын, ерітіндінің
құрамын және физикалық-химиялық өзгері
Аналитикалык кондуктометрияны тура және жанама деп жіктейді. Тікелей кондуктометрия әдісінде зат концентрациясын ерітіндінің электр өткізгіштігі бойынша анықтайды, онда да бұл екеуінің арасындағы тура пропорционалдық тэуелділіктін болуына байланысгы. Бұл әдіс негізінен бір кұрамдас бөлікті ерітінді үшін немесе оның құрамындағы өзге қосылыстардың концентрациясы өзгеріссіз қалатын жағдайда тиімді. Анықталатын құрамдас бөліктің концентрациясы электр өткізгіштіктің ерітіпді концентрациясына тәуелділігін сипаттайды. Реттеуші график бойынша бұл тәуелділік тура сызықты сипат алуы керек. Талданатын ерітіндінің электр өткізгіштігін репеуші осы график бойынша өлшеп, іздеп отырған құрамдас бөліктін концентрациясын (немесе мөлшерін) табады.
Тура кондуктометрлік
талдау әдісі өте карапайым
Жанама кондуктометрия әдісі. Бұл әдіс көп кұрамды ерітіндідегі тек бір ғана құрамдас бөлікті талдаған кезде, кондуктометриямен қатар талдаудың басқа да физикалық-химиялық әдістерін қолдануга негізделген. Сол сияқты жанама кондуктометрия әдісіне ерітіндідегі ойтеуір бір қосылыс немесе сумен әрекеттесіп, электр өткізгішті өзгертуге себепші болатын газдың концентрациясын анықтау да енеді, мысалы, С02, NH3, S02, S03, N02 және т.б.
Кондуктометрлік титрлеу
Кондуктометрлік титрлеу. Титрлеу процесін бақылау үшін электр өткізгіштікті өлшеу әдісін колдануды берілген ерітіндінің электр өткізгіштігі реагент не реакция өнімінікінен айтарлықтай өзгеше болған жағдайда қолдануға болады. Титрлеу кезінде ұяшык тұрактысын білу шарт емес, өйткені ә.н.-ді табу үшін салыстырмалы шамалар да жеткілікті. Алайда электродтар арасы өзгеріссіз қалғаны абзал, яғни олар кеңістікте мықты орналасуы керек.
Кез келген ион ерігіндісінің электр өткізгіштігіне қосар үлесі, оның концентрациясы мен эквиваленттік электр өткізгіштігіне тура пропорционал, бірақ титрлеу барысында реагенттің қосылуына қарай ерітіндінің көлемі артып отырады. Бұған электр өткізгіштікті есептеу кезінде ерітіндіні сұйылтқанда өзгеріс енгізу керек. Сызықты тәуелділіктен ауытқу іс жүзінде реакцияға түсуші зат не өнімнің гидролизденуі немесе тұнбанын ішінара еруі не тұрақтануы салдарынан байкалады.
Титрлеу қисығының пішінін
теориялық тұрғыдан болжауға болады.
Титрлеу кезінде жүйелі нүктелердегі
әр ионының концентрациясын
Сұйығылған ерітіндінің
электр өткізгіштігін есептегенде,
иондардың қозғалткыштығының