Автор: Пользователь скрыл имя, 06 Ноября 2014 в 19:22, реферат
Большинство проблем, которые сегодня мы
связываем с глобальными проблемами современности, сопровождали человечество на протяжении всей его истории. К ним прежде всего следует отнести проблемы экологии, сохранения мира, преодолении нищеты, голода, неграмотности. Но после второй мировой войны, благодаря невиданным масштабам преобразовательной деятельности человека, все эти проблемы превратились в глобальные, выражающие противоречия целостного современного мира и обозначающие с небывалой силой необходимость сотрудничества и единения всех людей Земли.
Проектный облик спутниковых солнечных электростанций представляет собой конструкцию, основным элементом которой служат солнечные батареи. При вырабатываемой мощности 5 ГВт площадь солнечных коллекторов спутниковых солнечных электростанций составляет 50 км 2, а масса станции при использовании фотоэлектрических преобразователей из арсенида галлия оценивается в 34 тыс.т.
Трудности, связанные со спутниковыми солнечными электростанциями: транспортировка такого количества грузов в космос и сборкой на орбите этой конструкции. не выяснена до конца возможность безопасной передачи на Землю энергии в виде микроволнового или лазерного излучения. Вероятно, в XXI веке на основе новых достижений научно-технического прогресса проекты спутниковых солнечных электростанций претерпят существенные изменения и станут технически реализуемыми и рентабельными.
Опасная химия - опасная жизнь.
26 января 1983 г. Падение ракеты-носителя
с космодрома Плесецк на лед
Северной Двины в районе поселк
1 февраля 1988г. Авария в
г.Ярославле на железно- дорожном
перегоне Приволжье-Филино. С рельсов
сошли 7 вагонов грузового
24 июня 1977 г. Первый пуск
с космодрома
26 июня 1973 г. Взрыв и пожар
при состоявшемся на
3 октября 1986 г. Взрыв ракеты,
разгерметизация ракетного
20 октября 1991 г. Авария с цистерной для перевозки высокотоксичного ракетного топлива гептила в районе станции Плесецкая (Архангельская область).
24 октября 1960
г. На 41-й площадке космодрома
Байконур произошла самая
Пора разбираться с космическим "мусором".
Расчеты и опыт прекращения существования предыдущих космических станций существенно меньшей размерности указывают на невозможность экологически безопасного прекращения существования станции "МИР" (имеющей массу более 120 т) при планируемой ликвидации "затоплением": высок риск опасных последствий для наземных объектов при падении ее фрагментов.
Уместно напомнить примеры реализации опасных сценариев: известные факты падения обломков крупной орбитальной станции "Скайлэб" (США) в 1979 г. в Индийский океан и на территорию Австралии после входа в плотные слои атмосферы, а также схода с орбиты и прекращения существования орбитальной станции "Салют-7" (СССР) в 1992 г.
Известно, что крупные объекты сгорают неполностью, их фрагменты достигают поверхности Земли. Таким образом, прекращение существования крупных космических аппаратов представляет серъезную и сложную экологическую проблему, поскольку:
1) при их сгорании в атмосфере осуществляется ее загрязнение на больших высотах;
2) при выпадении несгоревших
фрагментов на поверхность
В конце февраля 1999 г. на орбиту вышел американский искусственный спутник "ARGOS" ("Advanced Research and Global Observation Satellite"), на который, в частности, возложена не совсем обычная задача: находящийся на его борту прибор SPADUS предназначен для измерения массы, скорости и определения траекторий космических частиц, размеры которых слишком малы для наблюдения наземными средствами. Этот прибор по заказу НАСА США был специально разработан в Чикагском университете под руководством Дж.Симпсона (J.Simpson).
Поступающие от спутника данные позволят ученым отличать космический "мусор", порожденный человеческой деятельностью, от естественной пыли, мелких обломков комет и других небесных объектов. Это будет эффективно способствовать созданию условий, безопасных для пилотируемых и непилотируемых полетов в околоземном пространстве.
Спутник "ARGOS" должен проработать на орбите около трех лет.
Гидрометеорология.
Более половины поверхности планеты остается "белым пятном" для наземных средств метеорологии. Спутники обеспечивают получение данных в глобальном масштабе. В нашей стране метеорологическая космическая система функционирует с 1967 г. в составе 2-3 космических аппаратов типа "Метеор" на средневысотной (900-1200 км) орбите. В настоящее время завершены работы по разработке геостационарного КА гидрометеорологического назначения "Электро", с 1994 г. проводятся его летные испытания.
С помощью метеорологических спутников решаются задачи:
- краткосрочного и
- контроля опасных погодных явлений (ливней, циклонов, тайфунов, ураганов и др.) и предупреждения об их приближении;
- контроля климатообразующих факторов и мониторинга глобальных изменений, происходящих на Земле;
- контроля радиоционной
и геофизической обстановки в
околоземном космическом
По результатам наблюдений с метеоспутников определяются необходимые для прогноза погоды и выполнения ряда программ исследования Земли параметры (распределение облачности, вертикальные профили температуры и влажности, распределение и общее содержание озона, плотности потоков ионизирующих излучений и др.), характеризующие состояние атмосферы и подстилающей поверхности. Космическая гидрометеорологическая информация позволяет сократить убытки в хозяйственной деятельности за счет повышения достоверности прогнозов погоды и уменьшить количество жертв и материальный ущерб от опасных погодных явлений за счет своевременного предупреждения об их приближении.
Программа научно-технических исследований по созданию системы защиты Земли от столкновений с опасными космическими объектами.
В последние годы у мировой общественности и в научных кругах проявляется значительный интерес к проблеме предотвращения столкновений с Землей крупных космических тел (астероидов, комет). Подобные столкновения могут привести как к локальным катастрофическим явлениям, так и к глобальной катастрофе. Падение на Землю метеорита типа Тунгусского, при современной насыщенности мира опасными производствами, может привести к материальным потерям на миллиарды долларов. Столкновение с астероидами более крупных размеров - диаметром порядка 1 км - угрожает существованию цивилизации в целом. По существующим в настоящее время оценкам, несмотря на малую вероятность падения астероидов на Землю, вероятность риска гибели индивидуума в результате столкновения сравнима с вероятностью гибели в авиакатастрофе, от землетрясения или урагана. Все это выдвигает проблему защиты Земли от подобных столкновений в ряд актуальных для современного мира.
Создание системы защиты Земли (СЗЗ) от столкновения с опасными космическими объектами (ОКО) приведет к решению целого ряда дополнительных задач:
- в результате исследований
будет получен уникальный
- впервые в истории
человеческого общества
- полученные в ходе
реализации столь крупного
При взаимодействии астероидов и комет с атмосферой Земли происходит образование воздушной ударной волны. Температура на фронте волны столь высока, что с его поверхности излучается тепловой поток большой мощности. В результате взаимодействия астероида или кометы с атмосферой происходит его разрушение на отдельные фрагменты и абляция этих фрагментов. При небольших размерах ОКО происходит полное сгорание ОКО или его фрагментов в верхних слоях атмосферы. Начиная с некоторых минимальных размеров ОКО и в зависимости от типа ОКО и скорости соударения, разрушение происходит вблизи поверхности Земли и имеет характер взрыва. При этом возможны существенные разрушения на поверхности Земли и образование крупномасштабных пожаров. При еще больших размерах фрагменты ОКО достигают поверхности Земли и производят удар по ней. В результате образуется кратер, масса грунта выбрасывается в атмосферу, приводя к ее запылению, в результате чего возможны долговременные или даже катастрофические изменения климата.
При ударе о грунт возникает мощная сейсмическая волна, при ударе о воду возможно образование цунами.
Столкновение с очень крупным метеорным телом может привести к полной гибели цивилизации на Земле.Большое число химических заводов, атомных электростанций и других объектов, разрушение которых приведет к региональной катастрофе. В связи с этим все большее внимание уделяется изучению падения тел "средних размеров". Такие тела падают на Землю не часто - примерно один раз в 100 - 300 лет.
Собственно для перехвата ОКО необходимо доставить средства воздействия к его поверхности. В качестве средств доставки могут использоваться существующие либо специально созданные ракетно-космические системы. В зависимости от типа средств воздействия и их габаритно-массовых характеристик требования к средствам доставки могут превысить достигнутые в существующих ракетных системах параметры. Это приводит к необходимости рассмотрения перспективных систем, в частности, перспективных двигательных установок - ядерных, электроядерных и т.п.
Сближение и взаимодействие с ОКО может происходить на скоростях , существенно превышающих скорости, типичные для военных систем. При этом возникает задача создания надежной автоматики, обеспечивающей наведение, сближение и заданный режим воздействия на ОКО.
Собственно воздействие на ОКО может быть произведено с помощью ядерного взрыва вблизи его поверхности, кинетического удара о поверхность ОКО большой массы, либо воздействием излучений от мощных источников энергии, например, лазерного излучения. Под действием взрыва (удара) часть вещества ОКО испаряется. В результате разлета испаренного вещества в теле ОКО распространяется ударная волна. Это приводит к выбросу вещества с поверхности ОКО и разрушению (дроблению) самого ОКО или его части. При этом возможно два варианта результата воздействия:
- изменение траектории ОКО под действием импульса, уносимого выброшенным веществом ОКО (мягкое воздействие);
- дробление ОКО на фрагменты,
которые по мере сближения
с Землей расходятся в
В зависимости от высоты взрыва над поверхностью ОКО меняется степень воздействия. При заглубленном взрыве в теле ОКО достигается максимальное для данной мощности воздействие. Таким образом, возникают задачи:
- определения импульса, уносимого веществом ОКО, при взрывах (ударах) различной мощности (массы и скорости);
- определения степени и характера разрушения ОКО при взрывах (ударах) различной мощности (массы и скорости);
- рассмотрения способов заглубления ядерных взрывных устройств в тело ОКО.
При создании СЗЗ необходимо также учитывать возможные экологические последствия, которые возникнут как в результате производства и отработки элементов системы, так и при ее функционировании.
Освоение космоса. Освоение Луны.
Масштабной задачей индустриализации космоса является разработка в перспективе природных ресурсов Луны. Исследования лунного грунта с помощью автоматических и пилотируемых аппаратов показали, что недра Луны богаты железом, алюминием, марганцем, хромом, титаном и другими редкими металлами. На Луне достаточно кислорода, содержащегося в связанном виде окислах металлов и кремния. Специфические условия на лунной поверхности (вакуум, небольшая сила тяжести) позволяют организовать на базе радикально новой технологии производство различных металлов, ситаллов и специальных стекол, порошковых строительных материалов.
Продукция лунного комплекса на 90% обеспечит потребности в материалах, необходимых для строительства околоземных спутниковых солнечных электростанций. При этом энергоемкость доставки грузов с поверхности Луны в космос значительно меньше, чем с Земли, - ведь скорости освобождения для Луны и Земли различаются в 5 раз (соответственно 2,36 и 11,2 км/с), к тому же на Луне отсутствует атмосфера.