Компьтерные сети

Автор: Пользователь скрыл имя, 01 Января 2012 в 18:51, курс лекций

Краткое описание

Компьтерные сети Компьтерные сети Компьтерные сети

Оглавление

1. Основные программные и аппаратные компоненты сети. Понятия «клиент», «сервер», «сетевая служба».
2. Логическая архитектура компьютерной сети.
3. Локальные и глобальные сети.
4. Сети операторов связи и корпоративные сети.
5. Основные характеристики современных компьютерных сетей.
6. Понятие «топология». Физическая и логическая топология. Базовые топологии.
7. Принципы именования и адресации в компьютерных сетях.
8. Многоуровневый подход к стандартизации в компьютерных сетях. Понятия «протокол», «интерфейс», «стек протоколов».
9. Эталонная модель взаимодействия открытых систем.
10. Коммуникационное оборудование. Физическая и логическая структуризация сети.
11. Типы кабелей.
12. Методы коммутации.
13. Технологии мультиплексирования.
14. Общая характеристика протоколов и стандартов локальных сетей. Модель IEEE 802.х.
15. Классификация методов доступа. Метод доступа CSMA/CD.
16. Технология Ethernet и ее развитие.
17. Технология Token Ring. Маркерный метод доступа.
18. Технология FDDI.
19. Функции, классификация, параметры настройки и совместимость сетевых адаптеров.
20. Мосты и коммутаторы локальных сетей.
21. Архитектура стека TCP /IP.
22. Адресная схема стека TCP/IP. Порядок назначения IP-адресов.
23. Классы IP-адресов.
24. Специальные IP-адреса.
25. Отображение IP-адресов на локальные адреса.
26. Организация доменов и доменных имен.
27. Понятие маршрутизации. Таблицы маршрутизации.
28. Транспортные протоколы стека TCP/IP.
29. Развитие стека TCP/IP. Протокол IPv6.
30. Глобальные компьютерные сети: архитектура, функции, типы.

Файлы: 1 файл

Компьютерные сети.doc

— 569.00 Кб (Скачать)

    Для присоединения экранированных кабелей к оборудованию используются разъемы конструкции IBM.

    Не  все типы кабелей стандарта IBM относятся  к экранированным кабелям - некоторые  определяют характеристики неэкранированного телефонного кабеля (Type 3) и оптоволоконного кабеля (Type 5).

    Коаксиальные  кабели

    Существует  большое количество типов коаксиальных кабелей, используемых в сетях различного типа - телефонных, телевизионных и  компьютерных. Коаксиальные кабели с  волновым сопротивлением 50 Ом (то есть "тонкий" и "толстый") описаны в стандарте EIA/TIA-568. Новый стандарт EIA/TIA-568A коаксиальные кабели не описывает, как морально устаревшие.

  • RG-8 и RG-11 - "толстый" коаксиальный кабель, разработанный для сетей Ethernet 10Base-5. Имеет волновое сопротивление 50 Ом и внешний диаметр около 12 мм. Этот кабель имеет достаточно толстый внутренний проводник диаметром 2,17 мм, который обеспечивает хорошие механические и электрические характеристики. Эффективная длина – 500м. Зато этот кабель сложно монтировать - он плохо гнется.
  • RG-58/U, RG-58A/U и RG-58 C/U - разновидности "тонкого" коаксиального кабеля для сетей Ethernet 10Base-2. Они обладают худшими механическими и электрическими характеристиками по сравнению с "толстым" коаксиальным кабелем. Тонкий внутренний проводник 0,89 мм не так прочен, зато обладает гораздо большей гибкостью, удобной при монтаже. Затухание в этом типе кабеля выше, чем в "толстом" коаксиальном кабеле. Эффективная длина – 185м. Для соединения кабелей с оборудованием используется разъем типа BNC.

    Волоконно-оптические кабели

    Состоят из центрального проводника света - стеклянного волокна, окруженного другим слоем стекла - оболочкой, обладающей меньшим показателем преломления, чем сердцевина. Распространяясь по сердцевине, лучи света не выходят за её пределы, отражаясь от оболочки. В зависимости от распределения показателя преломления и от величины сердечника различают:

    • многомодовое волокно со ступенчатым изменением показателя преломления;
    • многомодовое волокно с плавным изменением показателя преломления;
    • одномодовое волокно;

    Понятие "мода" описывает режим распространения  световых лучей во внутреннем сердечнике кабеля. В одномодовом кабеле (Single Mode Fider, SMF) используется центральный проводник очень малого диаметра, соизмеримого с длинной волны света - от 5 до 10 мкм. При этом практически все лучи света распространяются вдоль оптической оси световода, не отражаясь от внешнего проводника. Полоса пропускания одномодового кабеля очень широкая - до сотен гигагерц на километр. Изготовление тонких качественных волокон для одномодового кабеля представляет сложный технологический процесс, что делает одномодовый кабель достаточно дорогим. Кроме того, в волокно такого маленького диаметра достаточно сложно направить пучок света, не потеряв при этом значительную часть его энергии. Эффективная длина – 40-100км (в зависимости от качества волокна).

    В многомодовых кабелях (Multi Mode Fiber, MMF) используются более широкие внутренние сердечники, которые легче изготовить технологически. В стандартах определены два наиболее употребительных многомодовых кабеля: 62,5/125 мкм и 50.125 мкм, где 62,5 мкм или 50 мкм - это диаметр центрального проводника, а 125 мкм - диаметр внешнего проводника. Многомодовые кабели имеют более узкую полосу пропускания - от 500 до 800 МГц/км. Эффективная длина – 2 км.

    В качестве источников излучения света  в волоконно-оптических кабелях  применяются:

  • светодиоды;
  • полупроводниковые лазеры.

    Для одномодовых кабелей применяются  только полупроводниковые лазеры, так  как при таком малом диаметре оптического волокна световой поток, создаваемый светодиодом, невозможно без больших потерь направить в волокно. Для многомодовых кабелей используются более дешевые светодиодные излучатели.

    Волоконно-оптические кабели присоединяют к оборудованию разъемами MIC, ST и SC.

    Волоконно-оптические кабели обладают отличными характеристиками всех типов: электромагнитными, механическими (хорошо гнутся, а в соответствующей изоляции обладают хорошей механической прочностью). Однако у них есть один существенный недостаток - сложность соединения волокон с разъемами и между собой при необходимости наращивания длины кабеля.

Сама стоимость  волоконно-оптических кабелей ненамного  превышает стоимость кабелей  на витой паре, однако проведение монтажных  работ с оптоволокном обходится  намного дороже из-за трудоемкости операций и высокой стоимости применяемого монтажного оборудования

 

12. Методы коммутации.

 

    Процесс соединения абонентов сети через  транзитные узлы называется коммутацией.

    Существуют  три различные схемы коммутации абонентов в сетях: коммутация каналов, коммутация пакетов и коммутация сообщений. Каждая из этих схем имеет свои преимущества и недостатки, но по долгосрочным прогнозам специалистов будущее принадлежит технологии коммутации пакетов, как более гибкой и универсальной.

    Коммутация  каналов подразумевает образование непрерывного составного физического канала для прямой передачи данных между узлами. В сети с коммутацией каналов перед передачей данных всегда необходимо выполнить процедуру установления соединения, в процессе которой и создается составной канал. Коммутаторы, а также соединяющие их каналы должны обеспечивать одновременную передачу данных нескольких абонентских каналов. Для этого они должны быть высокоскоростными и поддерживать какую-либо технику мультиплексирования абонентских каналов.

    Недостатком сетей с коммутацией каналов  является невозможность применения пользовательской аппаратуры, работающей с разной скоростью.

    Сети  с коммутацией каналов хорошо приспособлены для коммутации потоков  данных постоянной скорости, когда единицей коммутации является не отдельный байт или пакет данных, а долговременный синхронный поток данных между двумя абонентами.

    Коммутация  пакетов - это техника коммутации абонентов, которая была специально разработана для эффективной передачи компьютерного трафика. При коммутации пакетов все передаваемые пользователем сети сообщения разбиваются в исходном узле на пакеты. Каждый пакет снабжается заголовком, в котором указывается адресная информация, необходимая для доставки пакета узлу назначения, а также номер пакета, который будет использоваться узлом назначения для сборки сообщения  Пакеты транспортируются в сети как независимые информационные блоки. Коммутаторы сети принимают пакеты от конечных узлов и на основании адресной информации передают их друг другу, а в конечном итоге - узлу назначения.Коммутаторы пакетной сети отличаются от коммутаторов каналов тем, что они имеют внутреннюю буферную память для временного хранения пакетов. Такая схема передачи данных позволяет сглаживать пульсации трафика на магистральных линиях и тем самым повысить пропускную способность сети в целом.

    Описанный выше режим передачи пакетов между двумя конечными узлами сети предполагает независимую маршрутизацию каждого пакета. Такой режим работы сети называется дейтаграммным.

    Существует  другой режим работы сети - передача пакетов по виртуальному каналу. В  этом случае перед тем, как начать передачу данных между двумя конечными узлами, должен быть установлен виртуальный канал, который представляет собой единственный маршрут, соединяющий эти конечные узлы. Динамический виртуальный канал устанавливается при передаче в сеть специального пакета - запроса на установление соединения. Этот пакет проходит через коммутаторы и «прокладывает» виртуальный канал. Это означает, что коммутаторы запоминают маршрут для данного соединения и при поступлении последующих пакетов данного соединения отправляют их всегда по проложенному маршруту.

    Дейтаграммный метод выгоден для передачи небольшого объема данных, когда время установления соединения может быть соизмеримым со временем передачи данных. При использовании метода виртуальных каналов время, затраченное на установление виртуального канала, компенсируется последующей быстрой передачей всего потока пакетов.

    Под коммутацией сообщений понимается передача единого блока данных между транзитными компьютерами сети с временной буферизацией этого блока на диске каждого компьютера. Сообщение в отличие от пакета имеет произвольную длину. Например, сообщением может быть текстовый документ, файл с кодом программы, электронное письмо. По такой схеме обычно передаются сообщения, не требующие немедленного ответа, чаще всего сообщения электронной почты. Режим передачи с промежуточным хранением на диске называется режимом «хранение-и-передача» (store-and-forward). Режим коммутации сообщений разгружает сеть для передачи трафика, требующего быстрого ответа, например трафика службы WWW или файловой службы.

    Сегодня коммутация сообщений работает только для некоторых не оперативных  служб, причем чаще всего поверх сети с коммутацией пакетов, как служба прикладного уровня.

 

13. Технологии мультиплексирования.

 

В настоящее время  для мультиплексирования абонентских каналов используются две техники:

  • техника частотного мультиплексирования (Frequency Division Multiplexing, FDM);
  • техника мультиплексирования с разделением времени (Time Division Multiplexing, TDM).

     
     

    При частотном мультиплексировании на входы FDM-коммутатора поступают исходные сигналы от абонентов сети. Коммутатор выполняет перенос частоты каждого канала в свой диапазон частот. Весь  высокочастотный диапазон т.о. делится на подполосы, которые отводятся для передачи данных абонентских каналов. В канале между двумя FDM-коммутаторами одновременно передаются сигналы всех абонентских каналов. Такой канал называют уплотненным.

    Техника мультиплексирования  с разделением  времени TDM рассчитана на дискретный характер передаваемых данных. Оборудование : мультиплексоры, коммутаторы, демультиплексоры -работает в режиме разделения времени, поочередно обслуживая в течение цикла своей работы все абонентские каналы. Каждой паре абонентов выделяется один квант времени, называемый также тайм-слотом. Длительность тайм-слота зависит от числа абонентских каналов, обслуживаемых мультиплексором TDM или коммутатором.

    Мультиплексор принимает информацию по N входным  каналам от конечных абонентов. В  каждом цикле мультиплексор выполняет следующие действия:

  • прием от каждого канала очередного байта данных;
  • составление из принятых байтов уплотненного кадра, называемого также обоймой;
  • передача уплотненного кадра на выходной канал с битовой скоростью, равной N*64 Кбит/с.

    Порядок байт в обойме соответствует номеру входного канала, от которого этот байт получен. Количество обслуживаемых мультиплексором абонентских каналов зависит от его быстродействия. Демультиплексор выполняет обратную задачу.

    Коммутатор  «перемешивает» нужным образом байты  в обойме, т.о. коммутатор обеспечивает соединение конечных абонентов в сети.

    Однажды выделенный номер тайм-слота остается в распоряжении соединения в течение  всего времени существования  этого соединения, даже если передаваемый трафик является пульсирующим и не всегда требует захваченного количества тайм-слотов.

    Сегодня практически все данные - голос, изображение, компьютерные данные - передаются в  цифровой форме. Поэтому выделенные каналы TDM-технологии, которые обеспечивают нижний уровень для передачи цифровых данных, являются универсальными каналами для построения сетей любого типа: телефонных, телевизионных и компьютерных.

 

14. Общая характеристика протоколов и стандартов локальных сетей. Модель IEEE 802.х.

 

    При организации взаимодействия узлов  в локальных сетях основная роль отводится классическим технологиям Ethernet, Token Ring, FDDI, разработанным более 15 лет назад и основанным на использовании разделяемых сред передачи. Разделяемые среды поддерживаются не только классическими технологиями, но и новыми - Fast Ethernet, l00VG-AnyLAN, Gigabit Ethernet.

    Современной тенденцией является частичный или  полный отказ от разделяемых сред: соединение узлов индивидуальными  связями (например, в технологии АТМ), широкое использование коммутируемых связей и микросегментации. Еще одна важная тенденция - появление полнодуплексного режима работы практически для всех технологий локальных сетей.

    В 1980 году в институте IEEE был организован  комитет 802 по стандартизации локальных  сетей, в результате работы которого было принято семейство стандартов IEEE 802.х, которые содержат рекомендации по проектированию нижних уровней локальных сетей. Эти стандарты были созданы на основе очень распространенных фирменных стандартов сетей Ethernet, ArcNet и Token Ring.

    Стандарты семейства IEEE 802.X охватывают только два нижних уровня семи-уровневой модели OSI - физический и канальный. Это связано с тем, что именно эти уровни в наибольшей степени отражают специфику локальных сетей. Старшие же уровни, начиная с сетевого, в значительной степени имеют общие черты как для локальных, так и для глобальных сетей.

Информация о работе Компьтерные сети