Генная терапия. Проблемы генной терапии

Автор: Пользователь скрыл имя, 27 Ноября 2011 в 13:37, реферат

Краткое описание

Известно, что почти все заболевания так или иначе связаны с нарушением работы генов, т.е. с негативными мутациями. И генная терапия как один из подходов молекулярной медицины направлена на то, чтобы так или иначе восстановить контроль за работой и функцией гена. В одних случаях, когда больные клетки потеряли функцию какого-либо гена, ее необходимо восстановить. Осуществляется это путем физического переноса гена в организм и далее в клетку

Оглавление

I. Введение 3
II. Основная часть 4
1. Применение векторов в генной терапии и проблемы, связанные
с этими методами 4
2. Терапия опухолей 7
III. Заключение 9
IV. Список литературы 10

Файлы: 1 файл

рефератпобиологии.doc

— 89.50 Кб (Скачать)
 
 
 
 
 
 
 
 

Реферат на тему:

  «Генная терапия. Проблемы генной терапии. » 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

I. Введение 3

II. Основная часть 4

1. Применение векторов в генной терапии и проблемы, связанные               

    с этими методами 4 

2. Терапия опухолей 7

III. Заключение 9

IV. Список литературы 10

 

Ведение.

    Известно, что почти все заболевания  так или иначе связаны с  нарушением работы генов, т.е. с негативными  мутациями. И генная терапия как  один из подходов молекулярной медицины направлена на то, чтобы так или иначе восстановить контроль за работой и функцией гена. В одних случаях, когда больные клетки потеряли функцию какого-либо гена, ее необходимо восстановить. Осуществляется это путем физического переноса гена в организм и далее в клетку. В других случаях, когда болезнь вызывается избыточной функцией, не свойственной нормальной клетке (например, при раке или инфекционных заболеваниях), работу гена надо подавить. Принципиальное отличие генной терапии от любой другой в том, что она направлена на устранение не симптомов заболевания, а его первопричины.

    Впервые попытка генной терапии в клинике  была предпринята           М. Клайном в 1983 году, когда им было осуществлено введения нормального  бета-глобинового гена больным бета-талассемией. Позднее была разработана методика генной терапии наследственной недостаточности аденозин-деаминазы (тяжелый иммунодефицит): нормальный ген был введен в клетки костного мозга больного и после их ретрансплантации активность фермента восстановилась, состояние больного улучшилось. Проведены клинические эксперименты по генотерапии рака. В лейкоциты больных злокачественной меланомой и поздними стадиями рака были введены гены, маркирующие злокачественные клетки (чтобы их могла узнавать иммунная система). У половины больных размеры опухолей уменьшились в два раза и более.

    В настоящее   время насчитывается более 40 заболеваний, при которых испытывается генная терапия, от редких форм (недостаточность аденозин-деманиазы) до распространенных, таких как рак, болезни сердечно-сосудистой системы и иммунодефициты. Весьма важно, что фрагменты ДНК и соответствующие гены были введены в клетки-мишени, которые были бы способны к последующему делению (клетки печени, стволовые клетки костного мозга и т.п.).

    Сейчас в мире проводится множество клинических испытаний по генной терапии тех или иных заболеваний (рис.1). За прошедшие годы генная терапия испытала целый ряд подъемов и падений, которые были вызваны широко разрекламированными, но не оправдавшимися ожиданиями. Это связано в первую очередь с тем, что коммерциализация и применение технологий стали опережать процесс познания законов природы.

    Методы  генной терапии постепенно входят в  арсенал современных эффективных  методов лечения наследственных заболеваний человека, что особенно важно в тех случаях, когда других возможностей просто не существует. Уже в ближайшем будущем генная терапия займет ведущее место в лечении многих болезней, считавшихся ранее неизлечимыми.  
 
 

 
 

    Рис.1. Диаграммы количественного распределения пациентов по типам заболеваний (вверху) и по типу использования векторов. 
 

Основная часть.

  1. Применение векторов в генной терапии и проблемы, связанные с 

         этими методами.

    До  настоящего времени все клинические исследования сфокусированы на внесении дополнительных генов, а не на коррекции существующих или на их замещении, что значительно сложнее. Но в любом случае ген необходимо доставить во все, в любые или в какие-либо определенные типы клеток и тканей. Отсюда следует два важных вывода. Во-первых, неотъемлемость генной терапии от Т-клеток и, как следствие, отсутствие генной терапии как таковой, а реальное существование генно-клеточной терапии. Во-вторых, как и для любого вида лекарственной терапии, основной проблемой остается доставка действующего гена в нужное место и с высокой эффективностью. Транспорт и проявление нужного гена в клетке обеспечивает вектор, к которому “прикрепляются” гены или их фрагменты (рис.2). Вектор - широкое понятие: это общее название “транспортного средства” для целенаправленной доставки того или иного вещества, и не только гена, а любых, даже таких традиционных лекарств, как анальгина или аспирина. Лекарственный препарат, попадающий в организм, как правило, традиционным путем, действует почти на все клетки, а надо подействовать или на определенную группу клеток, или даже на участок генома, специфичный для определенной группы клеток. С другой стороны, транспортируемое вещество необходимо “защитить” от повреждений. 
 
 

    

 
 

    Рис.2. Диаграммы количественного распределения пациентов по типу использования векторов. 
 

    Сегодня самая большая проблема медицины, которую пытаются решить десятки биотехнологических компаний, - направленная, т.е. векторная доставка и ее эффективность. В большинстве случаев для этих целей используются генетически модифицированные вирусы или вирусные векторы, и чаще всего мышиные ретровирусы. Они вместе с желаемым фрагментом ДНК легко включаются в геном клетки-хозяина. Для того, чтобы превратить ретровирусы в векторы, из них с помощью генно-инженерных методов удаляются нуклеотиды, ответственные за их размножение, но введенный с вирусом-вектором ген передается дочерним клеткам при клеточном делении. Однако, эти векторы не годятся для введения ДНК-фрагментов в неделящиеся клетки человека, например, в нейроны. Они мало пригодны для переноса генов в клетки, отличающиеся низкой митотической активностью в клетки эпителия дыхательных путей. Эти обстоятельства обусловили поиск других вирусных векторов, среди которых внимание привлекли аденовирусы. Из них также удаляются нуклеотиды, ответственные за репликацию. Аденовирусы могут переносить ДНК в неделящиеся клетки, чем отличаются от ретровирусов. Но в этом случае переносимая аденовирусом ДНК не встраивается в геном клетки хозяина, она остается вне хромосом, хотя и проявляет генную активность. В силу эписомальной локализации она не передается дочерним клеткам. Но с другой стороны, аденовирусные векторы позволяют вводить гены в клетки нервной системы и эпителий дыхательных путей. В качестве вектора генов используется также вирус простого герпеса - тип 1. Этот вектор легко встраивает экзогенную ДНК в нейроны, клетки печени. Как и другие вирусы-векторы, герпес-вирус подвергается генно-инженерной обработке, ведущей к утрате его способности к размножению (деления части вирусной ДНК).

    Вирусы, применяемые здесь в качестве векторов, лишены своих вредоносных  свойств и практически безопасны для человека. Но, к сожалению, реально возможна недоработка в технологии. Тому есть примеры, ставшие одной из основных причин временного спада интереса к этому направлению медицины. Так, в конце 90-х была зафиксирована смерть от генной терапии, когда вектором служил аденовирус. На самом деле смерть вызвал не вектор, а превышение дозы, определенной протоколом исследования, а также недоработка технологии, в результате чего произошла интоксикация организма пациента из-за его повышенной чувствительности. Но здесь скорее виноват человеческий фактор, потому что индивидуальные реакции организма часто непредсказуемы. 

    В 2002 г. проявились осложнения в ходе другого клинического исследования. Речь идет о так называемой ОКИН (острой комбинированной иммунной недостаточности) - тяжелой врожденной патологии, при которой новорожденного ребенка немедленно помещают в специальную стерильную камеру, поскольку любой микроорганизм для него смертельно опасен. Такие дети редко доживают до своего первого дня рождения, а стоимость поддержания их жизни очень высока. Во Франции проводятся клинические испытания метода генной терапии при лечении ОКИН. После коррекции гена удавалось практически полностью восстановить иммунную систему. Но сначала у одного ребенка, а потом еще у одного началась лейкемия. Это случилось из-за того, что ретровирус, примененный в качестве вектора, встроился в определенное место клеточного генома и нарушил работу других генов. Исследования хотели прекратить, но по требованию родителей их продолжили. Почему? Ответ простой: для таких больных нет других методов лечения. Даже в барокамере их продолжительность жизни - несколько лет. Подобная терапия дает им возможность жить намного дольше и полноценно, а лейкемия, особенно в детском возрасте, хорошо поддается химиотерапевтическому лечению. Грубо говоря, из двух зол выбирают наименьшее. Кроме этого, необходимо помнить слова Парацельса: “Яд - это всего лишь вопрос дозы”. Завышенная доза ретровирусного вектора нарушает работу других генов. А подбор эффективной терапевтической дозы, не имеющей негативных последствий, и есть одна из важнейших задач как доклинического исследования, так и клинических испытаний.

      Вирусы-векторы также применяют при семейной гиперхолестеринемии – еще одно заболевание – кандидат для генной терапии. Как известно, это заболевание представляет высокий риск для жизни молодых людей, т.к. отличается ранним инфарктом миокарда и ранним атеросклерозом. Оно связано с отсутствием на мембранах клеток рецепторов для липопротеинов низкой плотности, что обуславливает очень высокий уровень холестерина в крови. Так как рецепторы отсутствуют на клетках печени, то пока для введения генов прибегают к частичной гепатоэктомии. С помощью ретровирусного вектора в клетки печени вводится ген рецептора липопротеинов низкой плотности, после чего гепатоциты инъецируются в полую вену. В результате содержание холестерина в крови снижается на 35-50%. Конечно, пока данная технология слишком сложна, чтобы получить широкое практическое применение.

    Наследственный  дефицит гормона роста, проявляющийся  выраженной низкорослостью также может  быть устранен с помощью генной терапии. Ген гормона роста удалось  ввести в миоциты, которые начинали продуцировать этот гормон. В ближайшее  время будут проведены клинические испытания данного метода.

    Ген муковисцидоза был введен трем больным  в дыхательные пути с помощью  аденовирусного вектора, за больными ведется  наблюдение.

    Методы  трансплантации тканей также могут  быть отнесены к категории генной терапии, в частности, трансплантация костного мозга. Гены вводимых стволовых клеток могут активизировать дифференцировку многих клеточных линий – лимфоцитов, моноцитов, полинуклеаров, эритробластов. Это позволяет применять данный метод при лечении некоторых первичных иммунодефицитов гемоглобинопатий, болезни Гоше.

     

    2. Терапия опухолей.

    Не  секрет, что, несмотря на существенное улучшение методов борьбы с опухолями, онкологические заболевания продолжают оставаться одной из основных причин смертности. По данным Национального ракового института США, за последнее десятилетие смертность от рака снизилась на 15-17%, но одновременно с этим встречаемость заболевания увеличилась на 50%. Похоже, что эффективность традиционных методов лечения рака достигла своего максимума. Необходимо искать принципиально новые подходы к терапии опухолей. Достижения современной молекулярной биологии и генетики позволяют надеяться, что такие средства будут найдены.

    В настоящее время молекулярно-генетические принципы возникновения опухолей в основном понятны. Открыта и охарактеризована большая группа онкогенов, мутации в которых приводят к их повышенной экспрессии и, как следствие, к злокачественной трансформации клеток. Другая группа генов, обозначаемых как гены-супрессоры опухолей, кодируют белки, подавляющие клеточный рост. Инактивация таких генов также способствует превращению нормальной клетки в опухолевую. Наконец, выявлено большое число генов, изменения в которых всегда ведут к перерождению первичной, относительно доброкачественной опухоли. Ее клетки становятся злокачественными, способными к инвазивному, деструктивному росту и метастазированию, т.е. переносу и росту в новых местах. Более того, трансформированные клетки могут атаковать и уничтожать нормальные клетки организма.

    Хотя  мы узнали очень много о механизмах возникновения рака, это не привело к немедленному решению проблемы рака, т.е. к разработке методов его лечения. Одна из причин - разнообразие генетических изменений, вызывающих рак. Более того, в одной опухоли могут присутствовать клетки с разными генетическими портретами, которые выражаются в виде опухолевых антигенов. Другая причина - невозможность вызвать генетические изменения абсолютно во всех опухолевых клетках так, чтобы подавить их рост. Наконец, третья

Информация о работе Генная терапия. Проблемы генной терапии