Строительные материалы

Автор: Пользователь скрыл имя, 17 Апреля 2012 в 11:54, реферат

Краткое описание

Рассмотрены особенности использования различных строительных материалов.

Оглавление

1. Тенденции использования топливных шлаков и зол в отечественном строительном производстве
2. Ячеистый бетон
3. Теплоизоляционные материалы
4. Использованная литература

Файлы: 1 файл

Материаловедение.doc

— 1.49 Мб (Скачать)


СОДЕРЖАНИЕ

1.        Тенденции использования топливных шлаков и зол в отечественном строительном производстве              3

2.        Ячеистый бетон              5

3.        Теплоизоляционные материалы              7

4.        Использованная литература              12

 


1. ТЕНДЕНЦИИ ИСПОЛЬЗОВАНИЯ ТОПЛИВНЫХ ШЛАКОВ И ЗОЛ В ОТЕЧЕСТВЕННОМ СТРОИТЕЛЬНОМ ПРОИЗВОДСТВЕ

Золы и шлаки ТЭЦ при правильном и эффективном их ис­пользовании представляют собой огромное богатство и ис­точник расширения сырьевых ресурсов различных отраслей промышленности, в первую очередь промышленности стро­ительных материалов. В нашей стране выполнены большие научно-исследовательские работы и накоплен значительный опыт по использованию золошлаковых отходов электростанций.

Большой практический интерес представляет исследование возможностей массового использования золошлаковых сме­сей в качестве заполнителей в бетоны различного назначения. Это обусловлено как зерновым и химическим составом, так и физико-механическими характеристиками отходов ТЭЦ. Зерновой состав смеси соответствует рекомендуемым составам пес­ков для бетонов, модуль крупности составляет 3,42, что по­зволяет отнести его по существующей классификации к круп­ным пескам. По химическому составу материал на 80 % со­стоит из кремнезема, глинозема и гематита. Результаты испытаний на прочность золошлаковых бетонов естественно­го твердения, подвергнутых тепловлажностной обработке, показывают, что расход цемента для получения требуемой прочности не превышает нормы.

Для изучения изменения прочности золошлакобетона во времени были проведены исследования бетонов на основе золошлако­вых смесей с золоотвалов Беловской ГРЭС, Кемеровской ГРЭС, Новокемеровской ТЭЦ. Бетонная смесь готовилась в трех ви­дах смесителей: турбулентном, гравитационном, принудитель­ного перемешивания. Образцы-кубики 100x100x100 мм под­вергались термообработке по режиму 3,5 + 8 + 2 ч. при температуре 90° С, а часть образцов твердело в нормальных условиях. Изменение прочности бетона во времени опреде­ляли по результатам испытания образцов в возрасте 1,7, 14, 28, 180 и 1340 сут. Анализ полученных данных показал, что прочность золошлакобетона в возрасте 180 сут. составляет 116 ...128 % от марочной, а через 1340 сут. — 51 ... 68 % в зависимости от состава, условий приготовления и твердения. Таким образом, вопросы повышения долговечности материа­лов из отходов являются весьма актуальными.

В 1988—1989 гг. Кузбасским политехническим институтом проводились исследования, подтверждающие возможность при­менения смеси топливных и доменных шлаков для изготовле­ния тяжелых цементных бетонов классов от В7,5 до В35. Эти бетоны обладают физико-механическими и деформативными характеристиками, не уступающими, а иногда и превышающи­ми соответствующие показатели бетонов на природных мате­риалах.  Морозостойкость бетона на шлаковом заполнителе составляет     F 100 ... F 400,    водонепроницаемость W4...W12, предел прочности при сжатии после пропаривания 16...50 МПа. Шлаковый бетон коррозиестоек в условиях сульфатной агрессии и действия жидкой среды жизнедеятельности животных. Технология изготовления бетона на заполнителе из смеси доменного и топливного шлаков легко вписывается в технологические схемы действующих предприятий строительной индустрии.

Растущий дефицит в строительстве вяжущих веществ, в част­ности портландцемента, заставил ученых и практиков искать пути снижения его расхода в растворах и бетонах без ухудше­ния их свойств. Эффективные смешанные вяжущие с исполь­зованием местных материальных ресурсов были разработаны в Казанском инженерно-строительном институте. Вяжу­щие получали путем повторного помола рядовых портландцементов с грубодисперсными минеральными порошками природного и искусственного происхождения, такими, как реч­ной песок, доломитовая и известняковая мука, формовочная смесь, зола ТЭЦ. Механо-химическая активация поверхности цемента и минеральной добавки позволяет повысить проч­ность портландцемента на 20...24 %. Эффект увеличения прочности может быть усилен введением суперпластификато­ров. Цементно-песчаные растворы и мелкозернистые бето­ны, полученные на смешанных вяжущих, дали хорошие ре­зультаты.

Зола электрофильтров и золошлаковые смеси из отва­лов — эффективный компонент сырьевой смеси при произ­водстве портландцементного клинкера для замены глинистого и карбонатного компонентов или как корректирующая добавка.

Известен  метод Л. Триефе для  получения  вяжущего  из расплава известняка и золы, резко охлаждаемого водой, ко­торый затем подвергается помолу и сушке. Этот метод по­зволяет уменьшить  количество  известняка до  одной трети, отказаться от глины и известняка при получении цемента.

Одним из главных утилизаторов топливных зол и шлаков являются строители дорог. Наблюдения за опытными участка­ми дорог, построенными в разное время в нашей стране и за рубежом, подтверждают возможность использования золы во всех слоях оснований дорожных одежд для любой транс­портной нагрузки. Дорожные одежды с использованием зол и шлаков имеют достаточную прочность, морозостойкость, долговечность. Стабилизированные с помощью цемента и золы, материалы продолжают увеличивать свою прочность с течени­ем времени, а наиболее интенсивное нарастание прочности наблюдается в возрасте 90—120 суток.

На протяжении последних 10 лет изготовлено свыше 100 тыс. м3 дорожных плит, дорожного и газонного бордюра, тротуарной плитки, колец и других изделий на золе сухого удаления и гранулированного шлака, полученных от сжигания каменных углей Львовско-Волынского бассейна. Золошлаковые смеси применялись в качестве активных минеральных добавок, микронаполнителей, заполнителей. Изделия для дорожного строительства  изготавливались  из бетонов  классов   В15 ... В35.   При   этом   расход  золы   на 1 м3 бетона составил 50...100 кг, шлака — 200 ... 400 кг. Наилучшие результаты получены при замене 40 % мелкозернистого песка гранулированным шпаком.

Многочисленные исследования, проведенные в последнее время, говорят о том, что введение в состав бетонов золош­лаков кислого состава повышает их стойкость в агрессивных средах.

Большой экономический эффект дает применение топлив­ных золошлаков в качестве вяжущего для стабилизации грун­тов.

Необходимо отметить более высокую жесткость бетонных смесей на золошлаке по сравнению с бетонными смесями на традиционных заполнителях, что объясняется высокой адсорб­цией золошлаковых смесей, способствующей снижению водоцементного отношения, а следовательно, и удобоукладываемости. Прочность золошлаковых бетонов выше, чем у бето­нов на традиционных заполнителях. Это связано со многими причинами: во-первых, снижение водоцементного отношения ведет к повышению плотности, а следовательно, и прочности бетона; во-вторых, сказывается эффект "мелкозернистых по­рошков"; в-третьих, высокая прочность в поздние сроки твер­дения объясняется эффектом пуццоланизации, характерным для топливных отходов. По результатам исследований постро­ено несколько участков дорог, устроено основание из укаты­ваемого бетона на золошлаковых смесях.

Таким образом, диапазон применения золошлаковых сме­сей гидроудаления и зол-уноса ТЭЦ весьма обширен. Резуль­таты научных исследований, опытные работы позволяют сде­лать вывод о замене некоторых традиционных материалов на отходы промышленности. При этом свойства материалов с использованием зопошлаков не только не уступают традици­онным, но в некоторых случаях и превосходят их. Надо ска­зать, что несмотря на большой объем научных разработок в области использования отходов, в нашей стране отходы ис­пользуются еще очень cлa6o.

2. ЯЧЕИСТЫЙ БЕТОН

Ячеистые бетоны на 60...85% по объему состоят из замкнутых пор (ячеек) размером 0,2...2 мм. Ячеистые бетоны получают при затвердевании насыщенной газовыми пузырьками смеси вяжущего, кремнезимистого компонента и воды. Благодаря высокопористой структуре средняя плотность ячеистого бетона невелика — 300...1200 кг/м3; он имеет низкую теплопроводность при достаточной прочности. Бетоны с желаемыми характеристиками (плотностью, прочностью и теплопро­водностью) сравнительно легко можно получать, регулируя их пористость в процессе изготовления.

Состав и технология ячеистых бетонов. Вяжущим в ячеистых бетонах может служит портландцемент (или известь) с кремнеземистым компонентом. При применении известково-кремнезёмистых вяжущих получаемые бетоны называют газо- и пеносиликаты.

Кремнеземистый компонент — молотый кварцевый лесок, гранули­рованные доменные шлаки, зола ТЭС и др. Кремнеземистый компо­нент снижает расход вяжущего и уменьшает усадку бетона. Применение побочных продуктов промышленности (шлаков и зол) для этих целей экономически выгодно и экологически целесообразно.

Соотношение между кремнеземистым компонентом и вяжущим устанавливается опытным путем.

Для получения ячеистых бетонов используют как естественное твердение вяжущего, так и активизацию твердения с помощью пропаривания (t = 85...90°С) и автоклавной обработки (t = 175° С). Лучшее качество, имеют бетоны, прошедшие автоклавную обработку. В случае применения извести в составе вяжущего автоклавная обработка обя­зательна.

По способу образования пористой структуры (методу вспучивания вяжущего) различают: газобетоны и газосиликаты; пенобетоны и пе­носиликаты.

Газобетон и газосиликат получают, вспучивая тесто вяжущего газом, выделяющимся при химической реакции между веществом-газообразователем и вяжущим. Чаще всего газообразователем служит алюми­ниевая пудра, которая, реагируя с гидратом оксида кальция, выделяет водород

ЗСа(ОН)2 + 2Аl + 6Н2О g ЗСаО • Аl2О3 - 6Н2О + H2h

Согласно уравнению химической реакции, 1 кг алюминиевой выделит до 1,25 м3 водорода, т. е. для получения 1 м3 газобетона требуется 0,5...0,7 кг пудры.

Пенобетоны и пеносиликаты получают, смешивая тесто вяжущего с заранее приготовленной устойчивой технической пеной. Для образования пены используют пенообразователи, получаемые как модификацией побочных продуктов других производств (гидролизованная кровь, клееканифольный пенообразователь), так и синтезируемые специально (сульфанол и т. п.).

Свойства ячеистых бетонов определяются их пористостью, видом вяжущего и условиями твердения.

Как уже говорилось, пористость ячеистых бетонов — 60...85%. Характер пор — замкнутый, но стенки пор состоят из затвердевшего цементного камня, который, как известно, пронизан порами, в том числе и капиллярными. Для движения воздуха поры в ячеистом бетоне замкнуты, а для проникновения воды — открыты. Поэтому водопоглощение ячеистого бетона довольно высокое и морозостой­кость соответственно пониженная по сравнению с бетонами слитной структуры.

Гидрофильность цементного камня и большая пористость обуслов­ливают высокую сорбционную влажность. Это сказывается на тепло­изоляционных показателях ячеистого бетона. Поэтому при использовании ячеистого бетона в ограждающих конструкциях его наружную поверхность необходимо защищать от контакта с водой или гидрофобизировать.

Прочность ячеистых бетонов зависит от их средней плотности и находится в пределах 1,5...15 МПа. Модуль упругости ячеистых бетонов ниже, чем у обычных бетонов, т. е. они более деформативны. Кроме того, у ячеистого бетона повышенная ползучесть.

Ячеистые бетоны и изделия из них обладают хорошими звукоизо­ляционными свойствами, они огнестойки и легко поддаются механи­ческой обработке (пилятся и сверлятся).

Наиболее рациональная область применения ячеистых бетонов — ограждающие конструкции (стены) жилых и промышленных зданий: несущие — для малоэтажных зданий и ненесущие — для многоэтажных, имеющих несущий каркас.

3. ТЕПЛОИЗОЛЯЦИОННЫЕ МАТЕРИАЛЫ

Номенклатура теплоизоляционных материалов очень широка. Но около 90% от общего объема применения в строительстве составляют два вида изделий: из искусственных минеральных волокон (около 70%) и ячеистых пластмасс – пенопластов (около 20%). Это объясняется простотой технологии их производства (это касается пенопластов), огромной сырьевой базой ( это касается минеральных волокон) и высокими эксплуатационными свойствами.

Неорганические материалы изготавливаются на основе минерального сырья (горных пород, шлаков, стекла, вяжущих веществ, асбеста и т.п.). К этим материалам относятся изделия из минеральной ваты, пеностекло, ячеистые бетоны, асбестосодержащие засыпки и мастичные составы, а также пористые заполнители, используемые как теплоизоляционные засыпки (керамзит, перлит, вермикулит и др.). Неорганические теплоизоляционные материалы теплостойки, негорю­чи, не подвержены зашиванию. Как уже говорилось, наибольшее применение находят изделия на основе минеральной ваты.

Минераловатные изделия получают на основе коротких и очень тонких минеральных волокон (минеральной ваты), скрепляемых в изделия с помощью связующего или другими способами.

Минеральную вату вырабатывают из силикатных расплавов, сырьем для которых служат металлургические шлаки, осадочные (мергели, каолины и др.) и изверженные (базальт и др.) горные породы, отходы стекла и другие силикатные материалы. Название минеральная вата получает по виду сырья: например, шлаковая, базальтовая или стекло­вата. Вид сырья определяет, в частности, температуростойкость ваты (у базальтовой ваты — до 1000° С, а у стекловаты 550...650° С), тонкость и упругость волокна и другие свойства.

Силикатный расплав раздувом или разбрызгиванием центрифугой превращают в тончайшие стекловидные волокна диаметром 1...10 мкм и длиной в несколько сантиметров. Волокно собирается в камере волокноосаждения на непрерывно движущейся сетке. Сюда же пода­ется связующее вещество для получения из рыхлого минерального волокна ковра и дальнейшего формования изделий (в исходном виде минеральная вата в настоящее время не применяется).

Минераловатные изделия применяют для тепловой изоляции в широком диапазоне температур: — 200... + 600° С; изделия на основе специальных минеральных волокон (на­пример, базальтовых) выдерживают до 1000° С. Они слабо адсорбируют влагу, не поражаются грызунами.

Производят следующие виды минераловатных изделий: мягкие плиты (ми­неральный войлок) и прошивные маты, полутвердые и твердые плиты и скорлу­пы (рис. 1).

Информация о работе Строительные материалы