Контрольная работа по "Анатомии"

Автор: Пользователь скрыл имя, 15 Октября 2014 в 20:43, контрольная работа

Краткое описание

1. Что изучает анатомия?
Анатомия человека – наука о форме, строении и развитии человеческого организма в соответствии с половыми, возрастными и индивидуальными особенностями.
Анатомия изучает внешние формы и пропорции тела человека и его частей, отдельные органы, их конструкцию, микроскопическое строение

Файлы: 1 файл

ВОЗР АНАТОМИЯ 1 лекция.doc

— 114.00 Кб (Скачать)

Вирусы возбудители важнейших болезней человека, сельскохозяйственных животных и растений, и значение их всё время возрастает по мере снижения заболеваемости бактериальными, протозойными и грибковыми болезнями.

 

7. Что такое гомеостаз?

Жизнь возможна только при относительно небольшом диапазоне отклонений различных характеристик внутренней среды — физико-химических (кислотность, осмотическое давление, температура и др.) и физиологических (артериальное давление, содержание сахара в крови и др.) — от определенной средней величины. Постоянство внутренней среды живого организма называют гомеостазом (от греческих слов homoios — подобный, одинаковый и stasis — состояние).

Под действием факторов внешней среды жизненно важные характеристики внутренней среды могут изменяться. Тогда в организме возникают реакции, направленные на их восстановление или предотвращение таких изменений. Эти реакции называются гомеостатическими. При потере крови, например, происходит сужение сосудов, препятствующее падению артериального давления. При увеличении расхода сахара во время физической работы увеличивается его выделение в кровь из печени, что предотвращает падение уровня сахара в крови. При увеличении выработки тепла в организме расширяются кожные сосуды, и поэтому усиливается теплоотдача, что препятствует перегреву тела.

Гомеостатические реакции организует центральная нервная система, которая регулирует активность вегетативной и эндокринной систем. Последние уже непосредственно влияют на тонус кровеносных сосудов, интенсивность обмена веществ, работу сердца и других органов. Механизмы одной и той же гомеостатической реакции и их эффективность могут быть различными и зависят от множества факторов, в том числе наследственных.

Гомеостазом называют также сохранение постоянства видового состава и числа особей в биоценозах, способность популяции поддерживать динамическое равновесие генетического состава, что обеспечивает ее максимальную жизнеспособность (генетический гомеостаз).

 

8. Что такое цитолемма?

Цитолемма – универсальная кожа клетки, выполняет барьерную, защитную, рецепторную, выделительную функции, переносит питательные вещества, передает нервные импульсы и гормоны, соединяет клетки в ткани.

Это самая толстая (10 нм) и сложно организованная мембрана клетки. В её основе лежит универсальная биологическая мембрана, покрытая снаружи гликокаликсом, а изнутри, со стороны цитоплазмы, подмембранным слоем (рис.2-1Б). Гликокаликс (3-4 нм толщины) представлен наружными, углеводными участками сложных белков – гликопротеинов и гликолипидов, входящих в состав мембраны. Эти углеводные цепочки играют роль рецепторов, обеспечивающих распознавание клеткой соседних клеток и межклеточого вещества и взаимодействие с ними. В этот слой также входят поверхностные и полуинтегральные белки, функциональные участки которых находятся в надмембранной зоне (например, иммуноглобулины). В гликокаликсе находятся рецепторы гистосовместимости, рецепторы многих гормонов и нейромедиаторов.

Подмембранный, кортикальный слой образован микротрубочками, микрофибриллами и сократимыми микрофиламентами, которые являются частью цитоскелета клетки. Подмембранный слой обеспечивает поддержание формы клетки, создание её упругости, обеспечивает изменения клеточной поверхности. За счёт этого клетка участвует в эндо- и экзоцитозе, секреции, движении.

 Цитолемма  выполняет множество  функций:

1) разграничительная (цитолемма  отделяет, отграничивает клетку от окружающей среды и обеспечивает её связь с внешней средой);

2) распознавание данной клеткой  других клеток и прикрепление  к ним;

3) распознавание клеткой межклеточного  вещества и прикрепление к  его элементам (волокнам, базальной  мембране);

4) транспорт веществ и частиц  в цитоплазму и из неё;

5) взаимодействие с сигнальными  молекулами (гормонами, медиаторами, цитокинами) благодаря наличию на её поверхности  специфических рецепторов к ним;

6) обеспечивает движение клетки (образование псевдоподий) благодаря связи  цитолеммы  с сократимыми элементами цитоскелета.

В  цитолемме  расположены многочисленные рецепторы, через которые биологически активные вещества (лиганды, сигнальные молекулы, первые посредники: гормоны, медиаторы, факторы роста) действуют на клетку. Рецепторы представляют собой генетически детерминированные макромолекулярные сенсоры (белки, глико- и липопротеины) встроенные в  цитолемму  или расположенные внутри клетки и специализированные на восприятии специфических сигналов химической или физической природы. Биологически активные вещества при взаимодействии с рецептором вызывают каскад биохимических изменений в клетке, трансформируясь при этом в конкретный физиологический ответ (изменение функции клетки).

Все рецепторы имеют общий план строения и состоят из трёх частей: 1) надмебранной, осуществляющей взаимодействие с веществом (лигандом); 2) внутримембранной, осуществляющей перенос сигнала и 3) внутриклеточной, погружённой в цитоплазму.

 

9. Какое значение имеет  ядро?

Ядро – обязательная составная часть клетки (исключение: зрелые эритроциты), где сосредоточена основная масса ДНК.

В ядре протекают два важнейших процесса. Первый из них — это синтез самого генетического материала, в ходе которого количество ДНК в ядре удваивается (о ДНК и РНК см. Нуклеиновые кислоты). Этот процесс необходим для того, чтобы при последующем делении клетки (митозе) в двух дочерних клетках оказалось одинаковое количество генетического материала. Второй процесс — транскрипция — производство всех типов молекул РНК, которые, мигрируя в цитоплазму, обеспечивают синтез белков, необходимый для жизнедеятельности клетки.

Ядро отличается от окружающей его цитоплазмы по показателю преломления света. Именно поэтому его можно увидеть в живой клетке, но обычно для выявления и изучения ядра пользуются специальными красителями. Русское название «ядро» отражает наиболее характерную для этого органоида шарообразную форму. Такие ядра можно видеть в клетках печени, нервных клетках, но в гладкомышечных и эпителиальных клетках ядра овальные. Есть ядра и более причудливой формы.

Самые непохожие по форме ядра состоят из одних и тех же компонентов, т. е. имеют общий план строения. В ядре различают: ядерную оболочку, хроматин (хромосомный материал), ядрышко и ядерный сок. У каждого ядерного компонента своя структура, состав и функции.

Ядерная оболочка включает в себя две мембраны, располагающиеся на некотором расстоянии друг от друга. Пространство между мембранами ядерной оболочки называется перинуклеарным. В ядерной оболочке есть отверстия — поры. Но они не сквозные, а заполнены специальными белковыми структурами, которые называются комплексом ядерной поры. Через поры из ядра в цитоплазму выходят молекулы РНК, а навстречу им в ядро передвигаются белки. Сами же мембраны ядерной оболочки обеспечивают диффузию низкомолекулярных соединений в обоих направлениях.

Хроматин (от греческого слова chroma — цвет, краска) — это вещество хромосом, которые в интерфазном ядре значительно менее компактны, чем во время митоза. При окрашивании клетки они красятся ярче других структур.

В ядрах живых клеток хорошо заметно ядрышко. Оно имеет вид тельца округлой или неправильной формы и отчетливо выделяется на фоне довольно однородного ядра. Ядрышко — это образование, возникающее в ядре на тех хромосомах, которые участвуют в синтезе РНК рибосом. Район хромосомы, формирующий ядрышко, называют ядрышковым организатором. В ядрышке протекает не только синтез РНК, но и сборка субчастиц рибосом. Число ядрышек и их размеры могут быть различными. Продукты деятельности хроматина и ядрышка поступают первоначально в ядерный сок (кариоплазму).

Для роста и размножения клеток ядро совершенно необходимо. Если экспериментальным путем отделить от ядра основную часть цитоплазмы, то этот цитоплазматический комочек (цитопласт) может просуществовать без ядра лишь несколько суток. Ядро же, окруженное самым узким ободком цитоплазмы (кариопластом), полностью сохраняет свою жизнеспособность, постепенно обеспечивая восстановление органоидов и нормального объема цитоплазмы. Тем не менее некоторые специализированные клетки, например эритроциты млекопитающих, длительное время функционируют без ядра. Его лишены и тромбоциты — кровяные пластинки, образующиеся как фрагменты цитоплазмы больших клеток — мегакариоцитов. У сперматозоидов ядро есть, но оно совершенно неактивно.

 

10. Что такое оплодотворение?

Оплодотворение - слияние мужской половой клетки (сперматозоида) с женской (яйцеклеткой), приводящее к образованию зиготы, которая даёт начало новому организму. Оплодотворению предшествуют сложные процессы созревания яйцеклетки (оогенез) и сперматозоида (сперматогенез). В отличие от сперматозоидов, яйцеклетка не обладает самостоятельной подвижностью. Зрелая яйцеклетка выходит из фолликула в брюшную полость в середине менструального цикла в момент овуляции и попадает в маточную трубу благодаря её присасывающим перистальтическим движениям и мерцанию ресничек. Период овуляции и первые 12-24ч. после неё являются наиболее благоприятными для оплодотворения. Если оно не произошло, то в последующие дни происходят регресс и гибель яйцеклетки.

При половом сношении во влагалище женщины попадает сперма (семенная жидкость). Под действием кислой среды влагалища часть сперматозоидов погибает. Наиболее жизнеспособные из них проникают через канал шейки матки в щелочную среду её полости и через 1,5-2 ч после полового сношения достигают маточных труб, в ампулярном отделе которых происходит оплодотворение. К зрелой яйцеклетке устремляется множество сперматозоидов, однако через покрывающую её блестящую оболочку проникает, как правило, лишь один из них, ядро которого сливается с ядром яйцеклетки. С момента слияния половых клеток начинается беременность. Образуется одноклеточный зародыш, качественно новая клетка - зигота, из которой в результате сложного процесса развития в течение беременности формируется человеческий организм. Пол будущего ребёнка зависит от того, каким типом сперматозоида была оплодотворена яйцеклетка, всегда являющаяся носительницей Х-хромосомы. В том случае, если яйцеклетка была оплодотворена сперматозоидом с X (женской) половой хромосомой, возникает зародыш женского пола (XX). При оплодотворении яйцеклетки сперматозоидом с Y (мужской) половой хромосомой развивается эмбрион мужского пола (XY). Имеются данные о том, что сперматозоиды, содержащие Y-хромосому, менее долговечны и быстрее погибают по сравнению со сперматозоидами, содержащими Х-хромосому. Очевидно, в связи с этим вероятность зачатия мальчика возрастает, если оплодотворяющий половой акт произошёл во время овуляции. В том случае, если половое сношение было за несколько дней до овуляции, больше шансов, что произойдёт оплодотворение. Яйцеклетки сперматозоидами, содержащими Х-хромосому, т. е. выше вероятность рождения девочки.

Оплодотворённая яйцеклетка, продвигаясь по маточной трубе, подвергается дроблению, проходит стадии бластулы, морулы, бластоцисты и на 5-6-й день от момента оплодотворения достигает полости матки. К этому моменту зародыш (эмбриобласт) снаружи покрыт слоем особых клеток - трофобластом, который обеспечивает питание и имплантацию (внедрение) его в слизистую оболочку матки, называемую во время беременности децидуальной. Трофобласт выделяет ферменты, растворяющие елизистую оболочку матки, что облегчает погружение оплодотворённой яйцеклетки в её толщу.

 

11. Что характеризует  стадию дробления?

Дробление - это серия быстрых делений зиготы без промежуточного роста.

 После объединения геномов  яйцеклетки и сперматозоида зигота  сразу же приступает к митотическому  делению - начинается развитие многоклеточного  диплоидного организма. Первый этап  этого развития называется дроблением. Он имеет ряд особенностей. Прежде всего, в большинстве случаев деление клеток не чередуется с их ростом. Число клеток зародыша увеличивается, а его общий объем остается примерно равным объему зиготы. Во время дробления объем цитоплазмы остается примерно постоянным, а число ядер, их общий объем и в особенности площадь поверхности увеличиваются. Это значит, что в период дробления восстанавливаются нормальные (т.е. свойственные соматическим клеткам) ядерно-плазменные отношения. Митозы в ходе дробления особенно быстро следуют один за другим. Это происходит за счет сокращения  интерфазы : период Gx полностью выпадает, период G2 также сокращается. Интерфаза практически сводится к S-периоду: как только ДНК целиком удваивается, клетка вступает в митоз.

 Клетки, образующиеся в ходе  дробления, называются  бластомерами . У многих животных в течение  довольно длительного времени  они делятся синхронно. Правда, иногда  эта синхронность нарушается  рано: например, у аскариды на  стадии четырех бластомеров, а у млекопитающих несинхронно делятся уже первые два бластомера. При этом первые два деления обычно происходят в меридианальных плоскостях (проходят через анимально- вегетативную ось), а третье деление - в экваториальной (перпендикулярно этой оси).

 Еще одна характерная черта  дробления - отсутствие у бластомеров  признаков тканевой дифференцировки. Клетки уже могут "знать" свою  будущую судьбу, но еще не имеют  признаков нервных, мышечных или  эпителиальных.

 

12. Что такое имплантация?

Имплантация (от лат. in (im) — в, внутрь и plantatio — сажание, пересадка), прикрепление зародыша к стенке матки у млекопитающих с внутриутробным развитием и у человека.

Различают три типа имплантации:

  • Центральная имплантация — когда зародыш остаётся в просвете матки, прикрепляясь к её стенке либо всей поверхностью трофобласта, либо только её частью (у рукокрылых, жвачных).
  • Эксцентрическая имплантация — зародыш проникает в глубь складки слизистой оболочки матки (так называемой маточной крипты), стенки которой затем срастаются над зародышем и образуют имплантационную камеру, изолированную от полости матки (у грызунов).
  • Интерстициальная имплантация — характерна для высших млекопитающих (приматы и человек) — зародыш активно разрушает клетки слизистой оболочки матки и внедряется в образовавшуюся полость; дефект матки заживает, и зародыш оказывается полностью погруженным в стенку матки, где происходит его дальнейшее развитие.

Информация о работе Контрольная работа по "Анатомии"