Расчет теплотехнического оборудования: Кассетная установка

Автор: Пользователь скрыл имя, 05 Марта 2013 в 22:16, курсовая работа

Краткое описание

ЗАДАНИЕ
Выбрать рациональную схему теплоснабжения, рассчитать и спроектировать кассетную установку для тепловлажностной обработки строительных изделий.

Оглавление

ВВЕДЕНИЕ............................................................................................................3
1. ЛИТЕРАТУРНЫЙ ОБЗОР.................................................................................4
Подбор состава бетонной смеси................................................................25
Конструктивный расчет тепловой установки...........................................27
Расчет производительности установки.....................................................28
Расчет коэффициента теплообмена между
греющей средой и прогреваемым изделием......................................29
Расчет тепловыделения бетона при тепловой обработке........30
Расчет распределения температур в бетонных и железобетонных изделиях.................................................................................................................32
Теплотехнический расчет...........................................................................35
8а. Материальный баланс.........................................................................35
8б. Тепловой баланс..................................................................................37
Расчет диаметров паро- и конденсатопроводов......................................41
Заключение.............................................................................................................42
Библиографический список..................................................................................43

Файлы: 1 файл

ФЕДЕРАЛЬНОЕ АГЕНСТВО ПО ОБРАЗОВАНИЮ.doc

— 952.50 Кб (Скачать)

МИНИСТЕРСТВО ОБРАЗОВАНИЯ  И НАУКИ РФ

 

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ  ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО  ПРОФЕССИОНАЛЬНОГООБРАЗОВАНИЯ

 

«БЕЛГОРОДСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ                                  им. В.Г. ШУХОВА»

 

Кафедра ЭТ

 

 

 

 

 

 

 

 

Курсовая работа по дисциплине:

«Теплотехника и теплотехническое оборудование технологии строительных изделий»

на тему:

«Расчет теплотехнического оборудования:

Кассетная установка»

 

 

 

 

                                                                                                                

 

 

2012

 

ЗАДАНИЕ

Выбрать рациональную схему  теплоснабжения, рассчитать и спроектировать кассетную установку для тепловлажностной обработки строительных изделий.

 

Исходные данные:

 

Производительность камеры, м3/год

Вид изделия

Размеры изделия, м

Вид бетона

Теплоноситель

30000

Панели наружных стен

2,75´0,3´1,785

керамзитобетон

пар


 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

СОДЕРЖАНИЕ

 

ВВЕДЕНИЕ............................................................................................................3

1. ЛИТЕРАТУРНЫЙ ОБЗОР.................................................................................4

  1. Подбор состава бетонной смеси................................................................25
  2. Конструктивный расчет тепловой установки...........................................27
  3. Расчет производительности установки.....................................................28
  4. Расчет коэффициента теплообмена между 
    греющей средой и прогреваемым изделием......................................29
  5. Расчет тепловыделения бетона при тепловой обработке........30
  6. Расчет распределения температур в бетонных и железобетонных изделиях.................................................................................................................32
  7. Теплотехнический расчет...........................................................................35

8а. Материальный баланс.........................................................................35

8б. Тепловой баланс..................................................................................37

  1. Расчет диаметров паро- и конденсатопроводов......................................41

Заключение.............................................................................................................42

Библиографический список..................................................................................43

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1. ЛИТЕРАТУРНЫЙ ОБЗОР

Ускорение твердения  бетона позволяет быстрее получить изделия с отпускной прочностью, повысить оборачиваемость форм и другого оборудования, а так же эффективнее использовать производственные площадки.

Основным методом ускорения  твердения бетона является тепловая обработка. Она позволяет получить в необходимые сроки прочность  изделий, допускающая их транспортирование на строительство, монтаж в зданиях и сооружениях, а также восприятие действующих нагрузок.

К тепловой обработке  относятся пропаривание при атмосферном  и повышенном давлении, электропрогрев и лучистый обогрев, выдерживание с  помощью нагреваемой воздушной  среды и т.д. Процесс тепловой обработки бетона обычно состоит из подъема температуры до максимально установленного уровня, выдерживания при нем и охлаждения изделия до температуры окружающей среды.

Установки для  тепловлажностной обработки предназначены для ускоренного твердения изделий. Обычно тепловлажностную обработку ведут до достижения 70% полной проектной прочности бетона. Установки для тепловлажностной обработки разделяют по следующим признакам:

По режиму работы — на установки периодического и непрерывного действия. Установки периодического действия в свою очередь подразделяются на две группы: на работающие при атмосферном и избыточном давлении. Установки непрерывного действия могут работать только при атмосферном давлении. В качестве установок периодического   действия   применяют ямные камеры, кассеты, пакеты, термоформы и автоклавы. Установки непрерывного действия   изготовляют в виде горизонтальных и вертикальных   камер, в которых происходит непрерывное или импульсное передвижение подвергаемого обработке материала.

По виду используемого  теплоносителя различают установки, в которых используют водяной пар при атмосферном и избыточном   давлениях;    паровоздушную смесь, горячую воду, электроэнергию, продукты горения топлива и высокотемпературные органические теплоносители(горячие масла, даутерм, дитолилметан и др.).

Кроме установок  для тепловлажностной обработки в технологии сборного бетона и железобетона применяют установки для разогрева бетонной смеси и подогрева заполнителей.

1.1 Установки периодического действия

К таким установкам относятся  камеры ямного типа, кассетные установки, автоклавные установки.

Кассетные установки.

Кассетные установки  сочетают в себе установки для  формования и тепловлажностной обработки  изделий, что обусловливает значительную экономию производственных площадей. Бетонные и железобетонные изделия (плоские, ребристые) формуют и прогревают в вертикальных сборно-разборных формах. Так как длительная тепловая обработка снижает производительность и эффективность кассетного способа производства, то такие установки используются в двухстадийной технологии: формование и короткий прогрев в кассетной установке, а окончание процесса тепловой обработки в камерах выдерживания.

Конструктивно кассетные  установки состоят из неподвижной станины, подвижных тепловых отсеков, разделительных стенок, опор и прижимных домкратов. К паровым отсекам или разделительным стенкам крепятся днища и борта форм, которые в собранном состоянии (установка сжата домкратами) образуют вертикальные формы, заполняемые арматурой и бетоном. Торцевая неподвижная   теплоизолированная стенка  крепится   к раме станины, а подвижные стенки и отсеки перемещаются на, роликовых опорах. Передвижение стенок производится гидравлическими домкратами, а закрепление их — установочными клиньями в кронштейнах.    

Тепловые отсеки различных  типов кассет имеют различные  толщину и конструктивные особенности. Как правило, это жесткие металлические конструкции толщиной 70...240мм, имеющие каркас и обшитые металлическим листом толщиной 12...24 мм.

Теплоноситель к греющим  отсекам подводится с помощью гибких шлангов, арматурный каркас и бетонная смесь подаются сверху. Вибрирование бетона производится навесными вибраторами. В большинстве случаев в качестве теплоносителя используют пар, однако возможно применение горячей воды и высокотемпературных теплоносителей.

К недостаткам кассетных  установок относится необходимость использования пластичных бетонных смесей, так как высокую узкую щель (формовочный отсек), в которой находится арматурный каркас, заполнить жесткой бетонной смесью и уплотнить невозможно. Применение же пластичных смесей требует снижения скорости прогрева, удлинения цикла тепловой обработки и ограничения температуры нагрева (не выше 100. °С).

Кассетные установки  отличаются высокой металлоемкостью (до 10 т металла на одно изделие). Так как эти установки периодического действия, то прежде чем начнет прогреваться изделие, необходимо прогреть всю бортоснастку. Как известно, интенсивность теплообмена зависит от скорости движения и турбулизации теплоносителя. Поэтому предусматривают циркуляцию, многократное использование и многоходовое движение теплоносителя в  отсеках.

Одной из наиболее распространенных схем пароснабжения кассетных установок  является  эжекторная система (рис. 2). Применение эжектора позволяет организовать циркуляцию теплоносителя через тепловой отсек, уменьшить неравномерность прогрева изделий, экономить тепловую энергию, многократно используя теплоноситель.

Рис. 2. Схема эжекторной системы  пароснабжения кассеты: 1-магистральный паропровод; 2-падающий коллектор; 3-узел регулирования; 4-эжектор; 5-тепловые отсеки; 6-коллектор сбора конденсата; 7-конденсационный горшок; 8-конденсатопровод; 9-отсасывающий коллектор; 10-формовочные отсеки с разделительной стенкой

 

Пар с высокой температурой из магистрального паропровода 1 через узел регулирования 3 попадает в эжектор 4. В эжекторе, имеющем сопло, конфузор и диффузор, создается разрежение и охладившаяся паровоздушная смесь из тепловых отсеков 5 через резиновые шланги и отсасывающий коллектор 9 подсасывается в эжектор. Смешавшись со свежим паром и повысив температуру, теплоноситель через подающий коллектор 2 поступаетв тепловые отсеки 5, прогревая формовочные отсеки 10 с бетонными изделиями. Остывший пар конденсируется и по резиновым шлангам стекает в коллектор сбора конденсата 6 и далее в конденсатопровод 8; конденсационный горшок 7 отделяет конденсат и не позволяет пару из тепловых отсеков уходить в конденсатопровод. 

Прогрев изделий в  кассетных формах может производиться сразу после окончания формования, без предварительного выдерживания. Для ускорения прогрева и сокращения продолжительности тепловой обработки целесообразно бетонную смесь укладывать в предварительно подогретую до 40...45° форму. В этом случае продолжительность подъема температуры в отсеках форм до максимальной может быть сокращена до 1_1,5 ч.

Продолжительность изотермического  прогрева зависит от температуры и расположения тепловых отсеков, толщины изделий и состава бетона

Остывание изделий после прекращения подачи пара происходит весьма медленно из-за большой теплоемкости кассеты с изделиями, поэтому распалубку изделий делают при температуре 75...80 оС. Для снижения температуры в тепловом отсеке применяют принудительное охлаждение водой.

Ускорить процесс твердения  бетона можно также путем введения химических ускорителей. Наибольшее сокращение сроков твердения может быть достигнуто предварительным электроразогревом бетонной смеси и последующим кратковременным прогревом бетона в кассетной форме при температуре 95...100 оС.

Повышение температуры  изотермического прогрева выше 100 °С связано с повышением давления в  отсеках (при применении пара в качестве теплоносителя) и для плоских  изделий с большой поверхностью требует значительного усиления каркаса отсеков. В этих случаях рациональнее применять высокотемпературные теплоносители,  имеющие температуру кипения 250...350 °С.

Удельные расходы пара в кассетных установках должны составлять 200 кг пара на 1 м3 бетона, однако в зависимости от длительности цикла, состояния кассет и качества эксплуатации они колеблются от 200 до 1000 кг/м3.

 

Камеры ямного типа

Камеры ямного типа применяют  в агрегатно-поточной и полуконвейерной  технологии изготовления сборных железобетонных изделий. Они просты в изготовлении и широко распространены на заводах сборного железобетона. Выполняют их напольными, полузаглубленными или заглубленными в зависимости от уровня грунтовых вод.

 


Рис. 1. Ямная камера паропрогрева конструкции  Гипростройиндустрии:1-вентиляционный канал; 2-слив воды из вентиляционных гидрозатворов; 3-канал для подачи воздуха; 4-соединительная труба; 5,6-гидрозатворы подачи воздуха и крышки; 7-крышка камеры; 8-канал для паропровода; 9-плита с отверстиями; 10-канал для разводки пара

 

Крышку камеры 7 укладывают на гидрозатвор 6; пар по паропроводу, проложенному по каналу 8, попадает в пароразводящий канал 10 в нижней части камеры и через отверстия в перфорированной плите 9 подается в камеру. В период охлаждения воздух через гидрозатвор приточного вентиляционного клапана 5 и канал 3 подается в камеру, затем через вытяжной гидрозатвор и вентиляционный канал 1 выбрасывается в атмосферу отсасывающим вентилятором; вода из вентиляционных гидрозатворов перетекает по соединительной трубе 4 и вытекает по трубе 2.

Внутренние габариты камер в плане зависят от размеров форм укладываемых изделий с зазорами вдоль стен для прохода захватов автоматической траверсы, а для двухрядных камер - размерами двух форм с промежутками между ними. Более экономичны однорядные камеры, так как в них сокращается общая длительность цикла обработки, увеличивается оборачиваемость установок  и  форм,  снижается  металлоемкость  процесса.

Камеры проектируют  под определенный типоразмер изделий. Промежутки для прохода теплоносителя должны быть минимально допустимыми. Это повышает полезную загрузку камер, коэффициент заполнения их бетоном и тем самым увеличивает удельный объем продукции при снижении удельных расходов теплоты. Камеры располагают блоками по 6...8 шт., что также уменьшает удельные расходы теплоты за счет сокращения теплопотерь в окружающую среду. Высота камеры зависит от типа системы парораздачи и составляет 3...4м. Расстояние между формами составляет 50...75 мм, между дном камеры и днищем нижней формы — 150 мм, между верхним изделием и крышкой — 50 мм (для циркуляции теплоносителя).

Для предотвращения выбивания  пара в промежутке между стенами  и крышкой устанавливают гидрозатвор, представляющий собой заполненный  водой желоб из металлического швеллера, укладываемого по верхнему периметру стен камеры. К днищу швеллера приварена и замоноличена в стены металлическая полоса, препятствующая сдвиганию затвора при укладке крышки и проходу пара под затвором. Проходу пара над швеллером препятствует полоса или уголок, приваренные к крышке, и опускающиеся в воду гидрозатвора при закрытии крышки.

Информация о работе Расчет теплотехнического оборудования: Кассетная установка