КПД цикла Ренкина и степень сухости пара

Автор: Пользователь скрыл имя, 17 Января 2012 в 16:09, контрольная работа

Краткое описание

Анализ термического к. п. д. цикла Ренкина показывает, что термический к. п. д. паросиловой установки возрастает при увеличении начального давления p1 и начальной температуры пара t1.

Файлы: 1 файл

контрольные теплотехника.doc

— 406.50 Кб (Скачать)

                                                                               Проверил Нурсеитов  Ш.Ш. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

АСТАНА 2011 г. 

                                                                               

 

Вариант № 62 

    16. Как влияет начальная  температура перегретого  пара на степень  сухости его при  выходе из турбины

    Если температура пара выше температуры насыщенного пара того же давления, то такой пар называется перегретым. Разность между температурой перегретого пара и температурой насыщенного пара того же давления называется степенью перегрева. Так как удельный объем перегретого пара больше удельного объема насыщенного пара, то плотность перегретого пара меньше плотности насыщенного пара. Поэтому перегретый пар является ненасыщенным паром.

    В момент испарения последней капли жидкости в ограниченном пространстве без изменения температуры и давления образуется сухой насыщенный пар. Состояние такого пара определяется одним параметром - давлением.

    54. О чем говорит закон Кирхгофа и каково его практическое применение

    Для всякого тела излучательная и  поглощательная способности зависят от температуры и длины волны. Различные тела имеют различные значения Е и А. Зависимость между ними устанавливается законом Кирхгофа:

    Е = Еs*А или Е /А = Еs = Еss = Сs*(Т/100)4 . (11.11)

    Отношение лучеиспускательной способности тела (Е) к его погло-щательной способности (А) одинаково для всех серых тел, находящихся при одинаковых температурах и равно лучеиспускательной способности абсолютно черного тела при той же температуре.

    Из  закона Кирхгофа следует, что если тело обладает малой поглощательной способностью, то оно одновременно обладает и малой  лучеиспускательной способностью (полированные металлы). Абсолютно черное тело, обладающее максимальной поглощательной способностью, имеет и наибольшую излучательную способность.

    Закон Кирхгофа остается справедливым и для  монохроматического излучения. Отношение  интенсивности излучения тела при определенной длине волны к его поглощательной способности при той же длине волны для всех тел одно и то же, если они находятся при одинаковых температурах, и численно равно интенсивности излучения абсолютно черного тела при той же длине волны и температуре, т.е. является функцией только длины волны и температуры:

    Еl / Аl = Il / Аl = Еsl = Isl = f (l ,T). (11.12)

    Поэтому тело, которое излучает энергию при  какой-нибудь длине волны, способно поглощать ее при этой же длине волны. Если тело не поглощает энергию в какой-то части спектра, то оно в этой части спектра и не излучает.

    Из  закона Кирхгофа также следует, что  степень черноты серого тела е при одной и той же температуре численно равно коэффициенту поглощения А:

    e = Il / Isl = Е/ Еsl = C / Csl = А. 

    81. Что такое теоретическая  температура горения и как она определяется при помощи диаграммы.

    Тепло, выделяющееся при сгорании топлива, воспринимается продуктами сгорания, которые нагреваются до определенной температуры, называемой температурой горения. Различают калориметрическую, теоретическую и действительную температуры сгорания топлива.

    В уравнение теплового баланса  реального горения входят составляющие, величина которых зависит не только от теплофизических свойств топлива, но и от условий, при которых протекает  горение. Например, от степени подогрева топлива и воздуха, потерь теплоты при горении, тепловосприятия в топке, коэффициента избытка воздуха.

    Чтобы выявить потенциальные возможности  топлива, вводят понятие горения  без подогрева топлива и воздуха  при идеальном адиабатическом процессе, т. е. горения с теоретическим количеством воздуха, без потерь теплоты и без теплообмена в топочной камере и с окружающей средой. Полученная в этих условиях температура продуктов сгорания называется теоретической.  

113. Назовите и объясните  работу основных  типов авиационных реактивных двигателей.

Наиболее общей  и важной особенностью всей совокупности двигателей является возможность разделения ее на две принципиально отличные группы: группу двигателей, способных  работать только в пределах атмосферы, и группу двигателей, не требующих для своей работы наличия атмосферы. 
Практически важное отличие этих двух групп двигателей заключается в использовании двигателями первой группы в качестве основной массы рабочего тела атмосферы (воздуха), тогда как у двигателей второй группы рабочее тело находится на борту летательного аппарата. 
Двигатели первого типа назовем атмосферными или, применительно к земным условиям, воздушными, а второго типа - ракетными. 
Воздушные двигатели, в дальнейшем, делятся на двигатели, у которых тепловая машина и движитель не совмещаются в одном агрегате, и на двигатели, у которых тепловая машина и движитель представляют собой единый агрегат. 
Двигатели первой группы условно назовем винтовыми воздушными двигателями и второй - реактивными воздушными двигателями. 
Как известно, основными представителями группы винтовых воздушных двигателей являются винто-моторные и турбовинтовые двигатели, имеющие одинаковые движители (воздушный винт), но отличающиеся различными типами тепловых машин; у винто-моторных двигателей машина представляет собой мотор, у турбовинтовых двигателей - турбокомпрессор. 
Группу реактивных воздушных двигателей представляют турбореактивные воздушные двигатели (турбореактивные двухконтурные или турбовентиляторные двигатели, турборакетные двигатели, турбореактивные двигатели) и прямоточные воздушно-реактивные двигатели (прямоточные реактивные двигатели и ракетно-прямоточные двигатели), принципиальное отличие которых заключается в отличии у прямоточных воздушно-реактивных двигателей сжатия воздуха за счет подвода механической энергии в тракте двигателя. Необходимое для работы двигателя повышение статического давления происходит только за счет торможения движущегося во входном устройстве воздухозаборника воздуха. 
Классификацию ракетных двигателей начнем исходя из рода энергии, используемой в движителях. Тогда ракетные двигатели делятся на двигатели с ядерным топливом, на двигатели с электро-ядерным топливом и на двигатели с химическим топливом. Последние можно подразделить на ракетные двигатели, использующие жидкое топливо и на двигатели, использующие твердое топливо. 
На схеме имеется несколько связей, объединяющих разные группы (эти связи серого цвета). Они показывают имеющиеся те или иные существенные свойства, относящиеся одновременно к двум группам. Например турбореактивный двухконтурный двигатель образует тягу как за счет внутреннего контура, представляющего тепловую машину (как в турбореактивном двигателе), так и за счет внешнего контура, представляющего собственно движитель, отдельный от тепловой машины (как в турбовинтовом двигателе). 
Ракетно-прямоточный двигатель конструктивно выполнен как сочетание ракетного двигателя (на жидком или твердом топливе) и прямоточного двигателя.

 

Винто-мотрные (поршневые) двигатели

 
1 - поршень; 2 - щатун; 3 - коленчатый вал; 4 - впускной клапан; 5 - выпускной  клапан; 6 - цилиндр двигателя 
 
Современные авиационные поршневые двигатели представляют собой звездообразные четырехтактные двигатели, работающие на бензине. Охлаждение цилиндров поршневых двигателей выполняется, как правило, воздушным. Ранее в авиации находили применение поршневые двигатели и с водяным охлаждением цилиндров. 
Поршневые двигатели различают по способу смесеобразования топлива с воздухом. Образование смеси осуществляется либо непосредственно в цилиндрах, либо в специальном устройстве, называемом карбюратором, откуда в цилиндр поступает готовая смесь. В зависимости от способа смесеобразования поршневые авиационные двигатели подразделяются на карбюраторные и двигатели с непосредственным впрыском. 
Сгорание топлива в поршневом двигателе осуществляется в цилиндрах, при этом тепловая энергия преобразуется в механическую, так как под действием давления образующихся газов происходит поступательное движение поршня. Поступательное движение поршня в свою очередь преобразуется во вращательное движение коленчатого вала двигателя через шатун, являющийся связующим звеном между цилиндром с поршнем и коленчатым валом. Прямоточные реактивные двигатели

Существует три  основных типа прямоточных воздушно-реактивных двигателей (ПВРД), использующих химическую энергию: 
- "дозвуковой" ПВРД для дозвуковых и малых сверхзвуковых скоростей полета (М < 1,5-2,0); 
 
 
 
- ПВРД для работы на умеренных сверхзвуковых скоростях (СПВРД) (М < 5,0-7,0); 
 
 
 
- двигатель для работы на больших сверхзвуковых (гиперзвуковых) скоростях (ГПВРД) (М > 5,0-7,0). 
 

Все три типа двигателей состоят из трех обязательных элементов: диффузора, камеры сгорания и сопла. 
Диффузор служит для повышения статического давления движущегося относительно его поверхности воздуха при его торможении. 
Диффузор "дозвукового" ПВРД представляет собой расширяющийся канал, где при отсутствии отрыва потока от стенок уменьшается скорость потока и соответственно повышается статическое давление. Если такой диффузор работает на сверхзвуковой скорости (М > 1,0), то торможение воздуха на нормальных режимах работы диффузора происходит также и в прямом скачке, находящемся либо впереди входа, либо в его плоскости. 
В диффузоре СПВРД торможение воздуха происходит в системе скачков, определяемой геометрией иглы диффузора и числом М, а затем после перехода к дозвуковому течению - в расширяющейся части канала. 
При оптимальном режиме работы диффузора переход к дозвуковой скорости в рабочем диапазоне числа М, как правило совершается в районе горла диффузора. 
Диффузор ГПВРД характерезуется тем, что торможение потока происходит по существу только при обтекании иглы диффузора, скорость потока после торможения остается сверхзвуковой, "дозвуковая" расширяющаяся часть отсутствует. 
Камера сгорания является элементом двигателя, в котором выделяется тепло с соответствующим повышением температуры рабочего тела. Выделение тепла происходит за счет химических реакций, где окислителем является кислород воздуха, а горючим - химическое соединение (топливо), находящиеся на борту летательного аппарата. 
Любая камера сгорания ПВРД с дозвуковой скоростью потока выполнена из типичных элементов. К таким элементам относится форкамера - устройство, обеспечивающее мощный пламенный мсточник поджигания основного количества горючей смеси. Форкамера представляет собой небольшую камеру сгорания с малой скоростью движения горючей смеси. 
Для обеспечения устойчивой работы, сокращения длины камеры применяются стабилизирующие устройства, представляющие собой плохо обтекаемые тела - отдельные конусы, кольца из углового профиля. Зона обратных потоков, образующаяся за стабилизаторами, обеспечивает необходимую устойчивость работы камеры сгорания. 
Смесеобразование достигается с помощью топливного коллектора, представляющего собой обычно кольцо, выполненное из трубки круглого или эллиптического сечения, в которое подается горючее. Горючее попадает в камеру сгорания через форсунки, установленные на кольце коллектора. Подача горючего может осуществляться как против потока, так и по его направлению. Коллектор устанавливается на небольшом расстоянии перед каждым стабилизатором. 
Камера сгорания ГПВРД не может быть выполнена, как камера сгорания "дозвукового" ПВРД или СПВРД, так как всякое загромождение сечения при числе М > 1,0 потока приведет к образованию сильных возмущений с переходом сверхзвукового потока в дозвуковой. Поэтому камера сгорания ГПВРД представляет собой свободный канал, подача горючего в который происходит со стенок и рассредоточена по длине. 
Воспламенение горючей смеси может достигаться за счет высокой температуры в потоке или пристеночном пограничном слое. Не исключено поджигание горючего специально организованными "факельными" источниками, которые могут быть образованы при истечении продуктов сгорания твердого топлива в специальном газогенераторе. Возможно также создание специальных горелок с подачей в них жидкого горючего и окислителя и образование дежурного факела, который может действовать без ограничения времени работы. Процесс сгорания топлива в камере сгорания ГПВРД может осуществляться с использованием детонационного горения. Резкий подъем давления и температуры в скачке ускоряет воспламенение и горение топлива. 
Назначение сопла ПВРД, так же как и в ракетном двигателе, является достижение максимально возможного статического давления в камере сгорания (что достигается подбором соответствующего значения критического сечения сопла), преобразование избыточного давления в кинетическую энергию истекающих газов, если давление в камере больше давления в окружающей среде. 
На ПВРД возможно использование регулируемого сопла, что способствует работе двигателя с минимальными потерями полного давления по тракту, а в "идеальном" случае вообще без потерь.

 

Министерство образования  и науки Республики Казахстан 

Казахский университет технологии и бизнеса 
 
 
 
 
 
 
 
 
 
 

КОНТРОЛЬНАЯ РАБОТА ПО ДИСЦИПЛИНЕ «ТЕПЛОТЕХНИКА» 
 
 
 
 
 
 
 
 

                                                                               Выполнила студентка  группы 

                                                                               ТППРОД 2гСПО Джузбаев Бахтияр 

                                                                               Проверил Нурсеитов  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

АСТАНА 2011 г. 

                                                                                 

 

Вариант № 67 

21. В чем сущность и экономическая целесообразность совместной выработки электроэнергии и тепла

    Конфигурация  системы совместного производства (когенерации) теплоты и электроэнергии определяется тем, насколько фактические  тепловые и электрические нагрузки соответствуют выработке тепловой и электрической мощности. Если имеется рынок, готовый потребить излишек тепла или электроэнергии, балансировка соотношения тепловой и электрической мощности не является критической для системы.

    Например, если электроэнергия может быть потреблена (на приемлемых условиях), тогда основой работы системы совместного производства становится потребность на месте в тепловой энергии (система предназначается для обеспечения тепловой нагрузки). Излишняя электроэнергия может быть продана, а ее недостаток может быть компенсирован закупками из других источников. В результате обеспечивается высокая энергетическая эффективность, и фактическое соотношение выработки тепла и электроэнергии для энергетической установки соответствует потребностям на месте эксплуатации установки.

    В качестве примера эффективного соотношения  тепловой и электрической мощности рассмотрим паровой котел, вырабатывающий в час 4 540 кг пара, подаваемого под давлением около 8 бар, и потребляющий для этого 4 400 кВт энергии топочного газа (при среднем КПД котла 75 %). При таком же количестве потребленной энергии топливного газа в стандартной газовой турбине мощностью 1,2 МВт может быть выработано необходимое количество пара при помощи утилизации отходящей теплоты. В результате около 1 100 кВт электроэнергии может быть выработано «без затрат» топлива. Это является примером очень хорошего соотношения тепла и мощности, благодаря которому система обладает привлекательными экономическими показателями.

Информация о работе КПД цикла Ренкина и степень сухости пара