Автор: Пользователь скрыл имя, 17 Января 2012 в 08:06, реферат
Одно- и двухатомные газы практически прозрачны для теплового излучения. Значительной излучающей и поглощающей способностью, имеющей практическое значение, обладают трех- и многоатомные газы. Для теплотехнических расчетов наибольший интерес представляют углекислый газ и водяной пар, образующийся при горении топлива. В отличие от твердых тел, имеющих в большинстве сплошные спектры излучения, газы излучают энергию лишь в определенных интервалах длин волн Δλ, называемых полосами спектра. Для лучей других длин волн вне этих полос газы прозрачны, и их энергия излучения равна нулю. Таким образом, излучение и поглощение газов имеют избирательный характер. Если поглощение и излучение энергии в твердых телах происходят в тонком поверхностном слое, то газы излучают и поглощают энергию во всем объеме. Количество поглощаемой газом энергии зависит от числа находящихся в данном объеме микрочастиц газа. Последнее пропорционально толщине газового слоя, характеризуемой длиной пути луча l, парциальному давлению газа р и его температуре Т. Следовательно,
Одно- и двухатомные газы практически прозрачны для теплового излучения. Значительной излучающей и поглощающей способностью, имеющей практическое значение, обладают трех- и многоатомные газы. Для теплотехнических расчетов наибольший интерес представляют углекислый газ и водяной пар, образующийся при горении топлива. В отличие от твердых тел, имеющих в большинстве сплошные спектры излучения, газы излучают энергию лишь в определенных интервалах длин волн Δλ, называемых полосами спектра. Для лучей других длин волн вне этих полос газы прозрачны, и их энергия излучения равна нулю. Таким образом, излучение и поглощение газов имеют избирательный характер. Если поглощение и излучение энергии в твердых телах происходят в тонком поверхностном слое, то газы излучают и поглощают энергию во всем объеме. Количество поглощаемой газом энергии зависит от числа находящихся в данном объеме микрочастиц газа. Последнее пропорционально толщине газового слоя, характеризуемой длиной пути луча l, парциальному давлению газа р и его температуре Т. Следовательно,
. | (11.22) |
Тогда в соответствии с законом Кирхгофа
. | (11.23) |
Для каждой полосы спектра
. |
Плотность интегрального
излучения газовой среды
. |
Плотность интегрального излучения для двуокиси углерода и водяного пара по опытным данным:
Отсюда следует,
что законы излучения газов значительно
отклоняются от закона Стефана —
Больцмана. Однако в основу практических
расчетов излучения газов положен
именно этот закон. В итоге плотность
интегрального излучения с
, | (11.24) |
где εг — степень черноты газового слоя, зависящая от температуры, давления и толщины слоя газа. Для Н2О и СО2 значения εг приводятся в виде номограмм, удобных для практических расчетов. Степень черноты газовых смесей определится как сумма степеней черноты отдельных компонентов. Плотность лучистого потока, передаваемого от газа к окружающим его стенкам (оболочке), вычисляется по уравнению
, | (11.25) |
где εг — степень черноты газа при температуре газа Тг; Аг — поглощающая способность газа при температуре оболочки Тст; — эффективная степень черноты оболочки.
ЛАМИНАРНОЕ ТЕЧЕНИЕ
(от лат. lamina — пластинка, полоска), упорядоченное течение жидкости или газа, при к-ром жидкость (газ) перемещается как бы слоями, параллельными направлению течения. Л. т. наблюдается или у очень вязких жидкостей, или при течениях, происходящих с достаточно малыми скоростями, а также при медленном обтекании жидкостью тел малых размеров. В частности, Л. т. имеют место в узких (капиллярных) трубках, в слое смазки в подшипниках, в тонком пограничном слое, образующемся вблизи поверхности тел при обтекании их жидкостью или газом, и др. С увеличением скорости движения данной жидкости Л. т. в нек-рый момент переходит в турбулентное течение. При этом существенно изменяются все его св-ва, в частности структура потока, профиль скоростей, закон сопротивления. Режим течения жидкости характеризуется Рейнольдса числом Re. Когда значение Re меньше критич. числа Reкр, имеет место Л. т. жидкости; если Re > Reкр, течение становится турбулентным. Значение Reкр зависит от вида рассматриваемого течения. Так, для течения в круглых трубах ReKp »2300 (если характерной скоростью считать среднюю по сечению скорость, а характерным размером — диаметр трубы). При Reкр<2300 течение жидкости в трубе будет Л. т. Вязкое Л. т. жидкости в трубе определяется Пуазёйля законом.
Физический энциклопедический словарь. — М.: Советская энциклопедия. Главный редактор А. М. Прохоров. 1983.
ЛАМИНАРНОЕ ТЕЧЕНИЕ
(от лат. lamina - пластинка) - упорядоченный режим течения вязкой жидкости (или газа), характеризующийся отсутствием перемешивания между соседними слоями жидкости. Условия, при к-рых может происходить устойчивое, т. е. не нарушающееся от случайных возмущений, Л. т., зависят от значения безразмерного Рейнольдса числа Re. Для каждого вида течения существует такое число R е Кр, наз. нижним критич. числом Рейнольдса, что при любом Re<Re кp Л. т. является устойчивым и практически осуществляется; значение R е кр обычно определяется экспериментально. При R е>R е кр, принимая особые меры для предотвращения случайных возмущений, можно тоже получить Л. т., но оно не будет устойчивым и, когда возникнут возмущения, перейдёт в неупорядоченное турбулентное течение. Теоретически Л. т. изучаются с помощью Навье - Стокса уравнений движения вязкой жидкости. Точные решения этих ур-ний удаётся получить лишь в немногих частных случаях, и обычно при решении конкретных задач используют те или иные приближённые методы.
Представление об особенностях Л. т. даёт хорошо изученный случай движения в круглой цилиндрич. трубе. Для этого течения R е Кр 2200, где Re= ( - средняя по расходу скорость жидкости, d - диаметр трубы, - кинематич. коэф. вязкости, - динамич. коэф. вязкости, - плотность жидкости). Т. о., практически устойчивое Л. т. может иметь место или при сравнительно медленном течении достаточно вязкой жидкости или в очень тонких (капиллярных) трубках. Напр., для воды ( =10-6 м 2/с при 20° С) устойчивое Л. т. с =1 м/с возможно лишь в трубках диаметром не более 2,2 мм.
При Л. т. в неограниченно длинной трубе скорость в любом сечении трубы изменяется по закону - (1 - -r2/ а2), где а - радиус трубы, r - расстояние от оси, - осевая (численно максимальная) скорость течения; соответствующий параболич. профиль скоростей показан на рис. а. Напряжение трения изменяется вдоль радиуса по линейному закону где = - напряжение трения на стенке трубы. Для преодоления сил вязкого трения в трубе при равномерном движении должен иметь место продольный перепад давления, выражаемый обычно равенством P1-P2 где p1 и р 2 - давления в к.-н. двух поперечных сечениях, находящихся на расстоянии l друг от друга, - коэф. сопротивления, зависящий от для Л. т. . Секундный расход жидкости в трубе при Л. т. определяет Пуазейля закон. В трубах конечной длины описанное Л. т. устанавливается не сразу и в начале трубы имеется т. н. входной участок, на к-ром профиль скоростей постепенно преобразуется в параболический. Приближённо длина входного участка
Распределение
скоростей по сечению
трубы: а - при ламинарном
течении; б - при
турбулентном течении.
Когда при течение становится турбулентным, существенно изменяются структура потока, профиль скоростей (рис., 6 )и закон сопротивления, т. е. зависимость от Re (см. Гидродинамическое сопротивление).
Кроме труб Л. т. имеет место в слое смазки в подшипниках, вблизи поверхности тел, обтекаемых маловязкой жидкостью (см. Пограничный слой), при медленном обтекании тел малых размеров очень вязкой жидкостью (см., в частности, Стокса формула). Теория Л. т. применяется также в вискозиметрии, при изучении теплообмена в движущейся вязкой жидкости, при изучении движения капель и пузырьков в жидкой среде, при рассмотрении течений в тонких плёнках жидкости и при решении ряда др. задач физики и физ. химии.