Разработка технологического процесса дуговой сварки воздухозборника

Автор: Пользователь скрыл имя, 28 Февраля 2013 в 17:54, курсовая работа

Краткое описание

В ходе выполнения курсового проекта был разработан технологический процесс дуговой сварки воздухозборника: рассчитаны режимы сварки, выбрано оборудование, рассчитаны экономические затраты.

Оглавление

Введение 5
Применительно к моей детали, я выбрал сварку в CO2 по причине её простоты в эксплуатации, дешевизны в использовании, так как мне не требуется сваривать детали большой толщины. 1 Современное состояние технологии 5
1 Современное состояние технологии 6
2 Вопросы теории 7
3 Состав, структура и свойства основного и присадочного материала 12
3.1 Основной материал 12
3.2 Присадочный материал 12
4 Технологический процесс 13
5. Средства технологического оснащения 21
Введение 5
Применительно к моей детали, я выбрал сварку в CO2 по причине её простоты в эксплуатации, дешевизны в использовании, так как мне не требуется сваривать детали большой толщины. 1 Современное состояние технологии 5
1 Современное состояние технологии 6
2 Вопросы теории 7
3 Состав, структура и свойства основного и присадочного материала 12
3.1 Основной материал 12
3.2 Присадочный материал 12
4 Технологический процесс 13
5. Средства технологического оснащения 21
6 Описание и технические характеристики приборов 30
7 Экономическая эффективность технологии 31
8 Охрана труда и экология 34
8.1 Техника безопасности 34
8.2 Производственная санитария 37
8.3 Экология 37
Заключение 39
Список литературы 40

Файлы: 1 файл

Сварка КП.doc

— 892.50 Кб (Скачать)

 

Магнитные методы контроля - основаны на исследовании магнитных полей рассеяния на намагниченном контролируемом изделии. Применяется несколько методов магнитного контроля сварного шва: магнитно-порошковый, магнитографический, индукционный и др.

Метод порошковой дефектоскопии является наиболее простым, но и менее четким. После намагничивания изделия сварной шов опыливают магнитным порошком (изготовляют из железной окалины) или покрывают суспензией (смесь магнитного порошка с керосином, маслом или другими веществами). В зоне дефекта порошок распределяется неравномерно—скапливается у краев пор, трещин; по этим скоплениям определяют расположение дефектов в сварном шве. Для большей наглядности магнитный порошок или суспензию окрашивают в яркие цвета.

Магнитографический контроль сварных швов разработан ВНИИСТ. Он широко применяется при контроле сварных швов магистральных трубопроводов. На сварной шов трубы накладывают ферромагнитную пленку, а затем намагничивают шов соленоидом или дисковым магнитом. В зависимости от вида и величины дефектов шва в соответствующих местах пленки будет та или иная степень .намагниченности. Магнитные сигналы преобразуют в звуковые с помощью магнитофона или наблюдают на экране осциллографа. Аппараты для магнитографического контроля с осциллографом позволяют проверять сварные швы со скоростью 0,5... 1 м/мин. Кроме высокой производительности они отличаются большой точностью (не уступающей рентгено- и 
гамма-дефектоскопии), простотой контроля, дешевизной применяемых материалов, возможностью проверки швов в различных пространственных положениях и безопасностью работы.

Индукционный метод  контроля основан на рассеянии магнитного потока датчиком дефектоскопа и последующем наведении электродвижущей силы в индикаторе. Наведенный индукционный ток усиливается и подается на телефон, сигнальную лампу или на магнитоэлектрический прибор. По звуку, отклонению стрелки прибора или зажиганию лампы определяют расположение дефекта. Индукционный контроль производят дефектоскопом, МД-138.


Ультразвуковой  метод контроля основан на способности ультразвуковых колебаний проникать в-толщу металла на значительную глубину и отражаться от неметаллических включений и других дефектных участков шва. Ультразвуковые дефектоскопы работают по следующему принципу. Пластинка из кварца или сегнетовой соли под действием переменного электрического поля высокой частоты дает ультразвуковые колебания, которые с помощью щупа направляются на проверяемое сварное соединение. На границе между однородным металлом и дефектом эти волны частично отражаются и воспринимаются второй пластинкой. Под действием переменного давления ультразвуковой волны на гранях этой пластинки появляется переменная разность потенциалов, зависящая от интенсивности отраженной волны. Электрические колебания от граней пластинки усиливаются и направляются в осциллограф. На экране осциллографа одновременно изображаются импульсы излучаемой и отражаемой волн. По относительному расположению этих импульсов и по интенсивности отраженного импульса можно судить о местонахождении и характере дефекта в сварном шве. В настоящее время выпускают ультразвуковые дефектоскопы, работаюшие на одной пластинке, которая подает короткими   импульсами   ультразвуковые волны на контролируемый шов. Отраженные волны воспринимаются этой же пластинкой в промежутки времени между импульсами излучения. При этом получается высокая четкость излучаемых и отраженных ультразвуковых волн. Ультразвуковой метод контроля позволяет обнаружить все основные дефекты сварных швов. Кроме того, ультразвуковые дефектоскопы УЗД-7н имеют приспособления для настройки на заданную толщину шва и для определения глубины расположения обнаруженного дефекта. Недостатками ультразвукового контроля являются трудность определения характера дефекта и проверки швов толщиной менее 10 мм.

Испытание сварных швов емкостей на герметичность проводят различными методами.

Испытание керосином: емкости, работающие без избыточного давления, с внутренней стороны обильно смачивают керосином; сварные швы с внешней стороны покрывают меловым водным раствором. При наличии даже мельчайших пор, трещин или неплотностей керосин просачивается через них и на покрытой мелом поверхности появляются керосиновые пятна.

Испытание, сжатым воздухом проводят нагнетанием в испытываемый резервуар сжатого воздуха до давления, указанного в технических условиях на изготовление резервуара. Швы покрывают мыльной эмульсией; при наличии дефектов появляются мыльные пузырьки. Если габариты позволяют погрузить испытываемый резервуар в ванну с водой, тогда дефекты определяют по пузырькам воздуха. Трубопроводы и большие резервуары испытывают сжатым воздухом на величину потери давления за время, установленное техническими условиями.

Вакуум-аппаратом контролируют сварные швы, имеющие односторонний доступ, когда невозможно использовать керосин, воздух или воду. Аппарат состоит из камеры с вакуумметром и насоса. Контролируемый свар-нон шов покрывают мыльной эмульсией, на нее устанавливают камеру и включают насос, который создает в камере вакуум, в результате камера присасывается к испытуемой поверхности. Для герметичности камера имеет в торце мягкую резиновую прокладку. Если шов имеет дефекты (поры, трещины, неплотности), то появляются мыльные пузырьки, которые наблюдаются через стекло камеры.

Испытание аммиаком проводят нагнетанием в испытываемый резервуар воздуха до рабочего давления или давления, указанного в технических условиях на изготовление изделия. Затем добавляют 1% аммиака от объема воздуха в резервуаре при нормальном давлении. Контролируемые сварные швы обертывают бумагой, пропитанной 5%-ным водным раствором азотнокислой ртути. При наличии неплотностей (поры, трещины и др.) аммиак проходит через них и, взаимодействуя с азотнокислой ртутью, дает на бумаге черные пятна.


Гидравлическое  испытание проводят с целью проверки не только плотности швов, но и их прочности. Такому испытанию подвергают сварные трубопроводы, сосуды и резервуары для газа или жидкости, работающие под давлением. Для этой цели все отверстия изделия плотно закрывают заглушками и заполняют его водой. С помощью гидравлического пресса создают давление, в 1,5 раза превышающее рабочее давление, и выдерживают в течение времени, указанного в технических условиях на изготовление изделия. Затем снижают давление до рабочего значения и проверяют наличие потения и пропусков воды в швах. При этом изделие обстукивают молотком на расстоянии 20 мм от сварного шва. Вертикальные цилиндрические резервуары обстукивать при испытании водой не разрешается. Для контроля сварных соединений магистральных трубопроводов используют передвижную лабораторию РМЛ2В, смонтированную на автомашине. Оборудование состоит из рентгеновской установки, позволяющей просвечивать стыки трубопроводов диаметром 720... 1420 мм, гамма-дефектоскопа и установки для магнитографического контроля. За смену лаборатория проверяет гамма-просвечиванием 6 стыков, рентгеновским просвечиванием 12 и магнитографическим контролем 20 стыков. Масса лаборатории— 5 т.

 

7 Экономическая эффективность  технологии

Для определения экономического эффекта  от внедрения новой технологии и  средств технологического оснащения  необходимо знать себестоимость  продукции (работ), производимой с их применением.

Себестоимость продукции – это  часть затрат общественного труда, выраженная в денежной форме, на её производство и реализацию, складывающихся из затрат прошлого труда, овеществлённого в используемых на предприятии средствах производства, в части затрат живого труда.

При изготовлении сварной конструкции  или выполнении сварки затрачиваются средства на основные и сварочные материалы, энергию, оплату труда, на возмещение стоимости, содержание и эксплуатацию средств технологического оснащения, на подготовку и освоение новых конструкций и технологий. Себестоимость отражает такие показатели эффективности производства, как производительность труда, экономия ресурсов, качество продукции, использование основных фондов и т. п. На основе анализа себестоимости при различных вариантах технических решений устанавливают оптимальные для внедрения в заданных условиях сварные конструкции, а также технологии и средства технологического оснащения.

В экономическом анализе сварочного производства используют три вида себестоимости продукции (сварной конструкции): цеховую, производственную и полную. Эти себестоимости слагаются из следующих статей затрат (руб.):

 

,                                                                       (11)

,                                                                (12)

,                                                        (13)

 

где См

затраты на сварочные материалы (электроды, электродные проволоки), руб;

Сз

основная заработная плата производственных рабочих на единицу продукции, руб;

Сэ

стоимость электроэнергии и других видов энергии, затрачиваемых на технологические нужды, руб;

Сц

цеховые расходы, руб;

Со

общезаводские расходы, руб;

Ср

затраты на реализацию, руб.


В сварочном производстве рассчитывается себестоимость сварных конструкций и сварочных работ (технологическая).

Технологическая себестоимость сварочных  работ состоит из затрат на сварочные  материалы, зарплату, электроэнергию, эксплуатацию и содержание сварочного оборудования и производственного помещения. Технологическая себестоимость при дуговой сварке определяется по формуле:

 

,                                                                      (14)

 

 где См

затраты на сварочные материалы (электроды, электродные проволоки), руб;

Сз

заработная плата, руб;

Сэ

стоимость электроэнергии, руб;

Са

амортизационные отчисления, руб;

Ср

затраты на текущий ремонт оборудования, руб;

Сп

затраты на отопление, освещение, уборку, ремонт, и амортизацию помещения, руб.


Затраты на электродную проволоку  при механизированной и автоматической дуговой сварке рассчитываются по формуле:


 

,                                                                         (15)

 

где mн

масса наплавленного металла, кг. mн =16,092 кг;

k1

коэффициент расхода электродной  проволоки. k1 =1,14;

Цэл

цена 1 кг электродной проволоки, руб. Цэл =4400 руб;

k2

коэффициент, учитывающий транспортно-заготовительные расходы на приобретение материалов. k2 =1,05;


Подставив получим:

 

.

 

Затраты на углекислый газ:

 

,                                                              (16)

 

где t0

время горения дуги. t0 =0,48 ч;

Qv

расход газа, л/мин. Qv =10 л/мин;

 –

цена 1 кг двуокиси углерода, руб. =500 руб;


 

 

Заработная плата (руб.) сварщиков:

 

,                                                                                   (17)

 

где r

часовая тарифная ставка, руб. r =961р/ч;

kз

коэффициент, учитывающий доплаты  к тарифной заработной плате и  отчисления на социальное страхование, kз =0,7;

k0

коэффициент основного времени. k0 =0,5;


Подставив, получим:

 

Амортизационные отчисления по оборудованию:

 

,                                                                        (18)

 

где С0

стоимость единицы оборудования, С0=19789000руб;

А0

норма годовых амортизационных  отчислений по оборудованию, %. А0 =10%;

ФД

действительный годовой фонд работы оборудования, ч. ФД =1560 ч;

kз

коэффициент загрузки оборудования, kз =0,8.


Подставив, получим:

 

 

Затраты на электроэнергию:

 

,                                                                                      (19)

 

 

где W

расход технологической электроэнергии, кВт.ч, W=40кВт.ч;

ЦЭ

цена 1кВт.ч электроэнергии, руб. ЦЭ =106,5 руб.


 

 

В итоге получим следующую себестоимость:

 

 

 

8 Охрана труда и экология

8.1 Техника безопасности

При электросварочных работах возможны следующие виды производственного травматизма: поражение электрическим током, поражение глаз и открытой поверхности кожи излучением электрической дуги, ожоги от капель металла и шлака, отравление вредными газами, пылью и испарениями, выделяющимися при сварке, ушибы и ранения от взрывов баллонов сжатого газа и при сварке  сосудов из-под горючих  веществ.

Защита от поражения электрическим током. При исправном состоянии оборудования и правильном выполнении сварочных работ возможность поражения током исключается. Однако в практике возможны поражения электрическим током вследствие неисправности сварочного оборудования или сети заземления, неправильного подключения сварочного оборудования к сети, неисправности электропроводки и неправильного ведения сварочных работ. Поражение от электрического тока происходит при прикосновении к токонесущим частям электропроводки и сварочной аппаратуры.

Напряжение холостого  хода источников питания дуги достигает 90 В, а при плазменно-дуговой резке — 200 В. Учитывая, что сопротивление человеческого организма в зависимости от его состояния (утомленность, состояние здоровья, влажность кожи)   мо жет изменяться в широких пределах {от 1000 до 20 000 Ом), указанные выше напряжения являются очень опасными для жизни. Токи более 0,05 А могут вызвать тяжелые последствия и даже смерть.

Информация о работе Разработка технологического процесса дуговой сварки воздухозборника