Автор: Пользователь скрыл имя, 27 Февраля 2013 в 21:59, курсовая работа
Ампервольтметр самопишущий переносный Н339 выпрямительной системы многопредельный предназначен для измерения и непрерывной записи тока и напряжения в цепях постоянного тока и переменного тока частоты от 45 до 10000 Гц при температуре окружающего воздуха от 10 до 35 °С и относительной влажности окружающего воздуха до 80 %. Приборы, представляемые в страны с тропическим климатом, предназначены для работы при температуре окружающего воздуха от 10 до 45°С и относительной влажности до 95 % .Форма представления информации непрерывная запись на диаграммную ленту в прямоугольных координатах чернилами или шариковым стержнем.
Введение 6
1 Определение измеряемой величины, наименование единицы измеряемой величины в системе СИ. 7
2 Основные метрологические и технические
характеристики прибора 11
3 Анализ методов измерений заданной величины 13
4 Описание принципа работы прибора. 21
5 Схема передачи размера единицы заданной величины 22
6 Разработка локальной поверочной схемы для заданного прибора. 25
7 Выбор метода и средств измерений (эталонов) для поверки
заданного прибора 26
8 Разработка проекта методики поверки заданного прибора 27
Заключение 29
Список использованной литературы 30
Мощность измеряется в ваттах
В сплошной среде объёмная мощность потерь определяется скалярным произведением вектора плотности тока и вектора напряжённости электрического поля в данной точке:
Объёмная мощность измеряется в ваттах на кубический метр.
Иногда для удобства вводят понятие тока смещения. По определению, плотность тока смещение — это векторная величина, равная быстроте изменения электрического поля во времени:
Дело в том, что при изменении электрического поля, также как и при протекании тока, происходит генерация магнитного поля, что делает эти два процесса похожими друг на друга. Кроме того, изменение электрического поля обычно сопровождается переносом энергии. Например, при зарядке и разрядке конденсатора то, что между его обкладками не происходит движения заряженных частиц, говорят о протекании через него тока смещения, переносящего некоторую энергию и своеобразным образом замыкающего электрическую цепь. Ток смещения в конденсаторе определяется по формуле:
,
где — заряд на обкладках конденсатора, — разность потенциалов между обкладками, — ёмкость конденсатора.
2 Основные метрологические и технические характеристики прибора
Таблица 1 – Основные метрологические и технические характеристики Ампервольтметра Н339
Тип средства измерений |
Диапазон (поддиапазоны) измерений |
Класс точности, погрешность |
Технические характеристики |
Ампервольтметр самопищущий переносный Н399 |
Прибор имеет следующие
конечные значения диапазонов измерений: |
Предел допускаемого
значения основной погрешности по измерению
и записи измеряемой величины (в
процентах от конечного значения диапазона измерений): |
Время установления показаний подвижной
части прибора не превышает 2 c |
Продолжение таблицы 1
Тип средства измерений |
Диапазон (поддиапазоны) измерений |
Класс точности, погрешность |
Технические характеристики |
резервуар чернильницы, обеспечивает непрерывную запись показаний на диаграммной ленте в течение не менее 30 суток Ширина рабочей части диаграммной ленты 100 мм. Длина диаграммной ленты не менее 15 м |
3 Анализ методов измерений заданной величины
3.1 Измерительные шунты
Шунт является простейшим измерительным преобразователем тока в напряжение. Измерительный шунт представляет собой четырехзажимный резистор. Два входных зажима шунта, к которым подводится ток I, называются токовыми, а два выходных зажима, с которых снимается напряжение U, называются потенциальными.
К потенциальным зажимам шунта обычно присоединяют измерительный механизм измерительного прибора.
Измерительный шунт характеризуется номинальным значением входного тока Iном и номинальным значением выходного напряжения Uном. Их отношение определяет номинальное сопротивление шунта:
Rш= Uном / Iном
Шунты применяются для расширения пределов измерения измерительных механизмов по току, при этом большую часть измеряемого тока пропускают через шунт, а меньшую — через измерительный механизм. Шунты имеют небольшое сопротивление и применяются, главным образом, в цепях постоянного тока с магнитоэлектрическими измерительными механизмами.
Рисунок 1- Схема соединения измерительного механизма с шунтом
На рисунке 1 приведена схема включения магнитоэлектрического механизма измерительного прибора с шунтом Rш. Ток Iи протекающий через измерительный механизм, связан с измеряемым током I зависимостью
Iи = I (Rш / Rш + Rи),
где Rи — сопротивление измерительного механизма.
Если необходимо, чтобы ток Iи был в n раз меньше тока I, то сопротивление шунта должно быть:
Rш = Rи / (n - 1),
где n = I / Iи — коэффициент шунтирования.
Шунты изготовляют из манганина. Если шунт рассчитан на небольшой ток (до 30 А), то его обычно встраивают в корпус прибора (внутренние шунты). Для измерения больших токов используют приборы с наружными шунтами В этом случае мощность, рассеиваемая в шунте, не нагревает прибор.
На рис. 2 показан наружный шунт на 2000 А Он имеет массивные наконечники из меди, которые служат для отвода тепла от манганиновых пластин, впаянных между ними. Зажимы шунта А и Б — токовые.
Рисунок 2 - Наружный шунт
Измерительный механизм присоединяют к потенциальным зажимам В и Г, между которыми и заключено сопротивление шунта. При таком включении измерительного механизма устраняются погрешности от контактных сопротивлений.
Наружные шунты обычно выполняются калиброванными, т е. рассчитываются на определенные токи и падения напряжения. Калиброванные шунты должны иметь номинальное падение напряжения 10, 15, 30, 50, 60, 75, 100, 150 и 300 мВ.
Для переносных магнитоэлектрических приборов на токи до 30 А внутренние шунты изготовляют на несколько пределов измерения.
На рис. 3, а, б показаны схемы многопредельных шунтов. Многопредельный шунт состоит из нескольких резисторов, которые можно переключать в зависимости от предела измерения рычажным переключателем (рис. 3, а) или путем переноса провода с одного зажима на другой (рис. 3, б).
При работе шунтов с измерительными приборами на переменном токе возникает дополнительная погрешность от изменения частоты, так как сопротивления шунта и измерительного механизма поразному зависят от частоты.
Рисунок 3 - Схемы многопредельных измерительных шунтов: a — шунта с рычажным переключателем, б — шунта с отдельными выводами
Шунты разделяются на классы точности 0,02; 0,05; 0,1; 0,2 и 0,5. Число, определяющее класс точности, обозначает допустимое отклонение сопротивления шунта в процентах его номинального значения.
3.2 Трансформатор тока
Трансформатор тока — трансформатор, первичная обмотка которого подключена к источнику тока.
Измерительный трансформатор тока — трансформатор, предназначенный для преобразования тока до значения, удобного для измерения. Первичная обмотка трансформатора тока включается последовательно в цепь с измеряемым переменным током, а во вторичную включаются измерительные приборы. Ток, протекающий по вторичной обмотке трансформатора тока, пропорционален току, протекающему в его первичной обмотке.
Трансформаторы тока широко используются для измерения электрического тока и в устройствах релейной защиты электроэнергетических систем, в связи с чем на них накладываются высокие требования по точности. Трансформаторы тока обеспечивают безопасность измерений, изолируя измерительные цепи от первичной цепи с высоким напряжением, часто составляющим сотни киловольт.
К трансформаторам тока предъявляются высокие требования по точности. Как правило, трансформатор тока выполняют с двумя и более группами вторичных обмоток: одна используется для подключения устройств защиты, другая, более точная — для подключения средств учёта и измерения (например, электрических счётчиков).
Вторичные обмотки трансформатора тока (не менее одной на каждый магнитопровод) обязательно нагружаются. Сопротивление нагрузки строго регламентировано требованиями к точности коэффициента трансформации. Незначительное отклонение сопротивления вторичной цепи от номинала (указанного на табличке) по модулю полного Z или cos ф (обычно cos = 0.8 индукт.) приводит к изменению погрешности преобразования и возможно ухудшению измерительных качеств трансформатора. Значительное увеличение сопротивления нагрузки создает высокое напряжение во вторичной обмотке, достаточное для пробоя изоляции трансформатора, что приводит к выходу трансформатора из строя, а также создает угрозу жизни обслуживающего персонала. Кроме того, из-за возрастающих потерь в сердечнике магнитопровод трансформатора начинает перегреваться, что так же может привести к повреждению (или, как минимум, к износу) изоляции и дальнейшему её пробою.
Коэффициент трансформации измерительных трансформаторов тока является их основной характеристикой. Номинальный (идеальный) коэффициент указывается на шильдике трансформатора в виде отношения номинального тока первичной (первичных) обмоток к номинальному току вторичной (вторичных) обмоток, например, 100/5 А или 10-15-50-100/5 А (для первичных обмоток с несколькими секциями витков). При этом реальный коэффициент трансформации несколько отличается от номинального. Это отличие характеризуется величиной погрешности преобразования, состоящей из двух составляющих - синфазной и квадратурной. Первая характеризует отклонение по величине, вторая отклонение по фазе вторичного тока реального от номинального. Эти величины регламентированы ГОСТами и служат основой для присвоения трансформаторам тока классов точности при проектировании и изготовлении. Поскольку в магнитных системах имеют место потери связанные с намагничиванием и нагревом магнитопровода, вторичный ток оказывается меньше номинального (т.е. погрешность отрицательная) у всех трансформаторов тока. В связи с этим для улучшения характеристик и внесения положительного смещения в погрешность преобразования применяют витковую коррекцию. А это означает, что коэффициент трансформации у таких откорректированных трансформаторов не соответствует привычной формуле соотношений витков первичной и вторичной обмоток.
Трансформаторы тока классифицируются по различным признакам:
1. По назначению трансформаторы
тока можно разделить на
2. По роду установки различают трансформаторы тока: а) для наружной установки (в открытых распределительных устройствах); б) для закрытой установки; в) встроенные в электрические аппараты и машины: выключатели, трансформаторы, генераторы и т. д.; г) накладные - надевающиеся сверху на проходной изолятор (например, на высоковольтный ввод силового трансформатора); д) переносные (для контрольных измерений и лабораторных испытаний).
3. По конструкции первичной обмотки трансформаторы тока делятся на:
а) многовитковые (катушечные, с петлевой обмоткой и с восьмерочной обмоткой);
б) одновитковые (стержневые); в) шинные.
4. По способу установки
трансформаторы тока для
а) проходные;
б) опорные.
5. По выполнению изоляции
трансформаторы тока можно
6. По числу ступеней
трансформации имеются
а) одноступенчатые;
б) двухступенчатые (каскадные).
7. По рабочему напряжению различают трансформаторы:
а) на номинальное напряжение свыше 1000 В;
б) на номинальное напряжение до 1000 В.
Усилители тока предназначены для преобразования малых токов в напряжение. Простейший способ преобразовать ток в напряжение - пропустить этот ток через резистор с известным сопротивлением. Однако при этом для увеличения чувствительности при измерении малых токов приходится существенно увеличивать сопротивление резистора, что:
а) приводит к нежелательному воздействию измерительной цепи на измеряемую;
б) требует повышения входного сопротивления последующих каскадов;
в) увеличивает инерционность цепи, вызываемую действием паразитных емкостей, в частности соединительной линии.
Усилители тока на ОУ позволяют в значительной мере избавиться от перечисленных недостатков.
Рисунок 4 – Схемы преобразователей тока в напряжение
4 Описание принципа работы прибора.
4.1 Прибор состоит из двух основных блоков: регистрационного и коммутационного. Кроме этого, прибор имеет еще и сменный блок с усилителем постоянного тока.
4.2 Регистрационный блок состоит: из измерительного механизма, механизма для перемещения диаграммной ленты, узла записи, отметчика времени.
4.2.1 В приборе используется измерительный механизм магнитоэлектрической системы с внутриматочным магнитом.
Информация о работе Разработка методики поверки ампервольтметра Н339