Расчёт абсорбционной установки

Автор: Пользователь скрыл имя, 10 Марта 2013 в 18:11, курсовая работа

Краткое описание

Современная химическая технология дает возможность использовать практически неограниченный круг сырья, заменить дорогое сырье дешевым и широко распространенным, перерабатывать отходы других производств. Химическая промышленность открывает широкие возможности для комплексного использования сырья, что устанавливает сложные производственные связи со многими отраслями промышленности. Химическая индустрия комбинируется с черной и цветной металлургией, коксованием угля, переработкой нефти, деревообрабатывающей промышленностью.

Оглавление

Введение………………………………………………………………………….
1. Описание принятых инженерных решений…………………………………
1.1. Теоретические основы разрабатываемого процесса.…...………………
1.1.1 Равновесие между фазами…………………………………………….
1.1.2. Материальный баланс и расход абсорбента…………………………
1.1.3. Скорость процесса…………………………………………………….
1.2. Основные технологические схемы для проведения абсорбции………..
1.3. Типовое оборудование для проектируемой установки…………………
1.3.1. Поверхностные и пленочные абсорберы……………………………
1.3.2. Насадочные абсорберы……………………………………………….
1.3.3. Барботажные (тарельчатые) абсорберы……………………………...
1.3.4. Распыливающие абсорберы…………………………………………..
2. Обоснование и описание установки………………………………………….
3. Подробный расчёт абсорбера. ……………………………………………….
3.1. Масса поглощаемого вещества и расход поглотителя………………….
3.2. Движущая сила массопередачи…………………………………………..
3.3. Коэффициент массопередачи…………………………………………….
3.4. Скорость газа и диаметр абсорбера………………………………………
3.5. Плотность орошения и активная поверхность насадки…………………
3.6. Расчёт коэффициентов массоотдачи……………………………………..
3.7. Поверхность массопередачи и высота абсорбера………………………
3.8. Гидравлическое сопротивление абсорберов…………………………….
4. Подробный расчёт теплообменника………………………………..………..
5. Расчёт вспомогательного оборудования…………………………………….
5.1. Расчёты вентилятора………………………………………………………
5.2. Расчет насоса………………………………………………………………
Заключение……………………………………………………………………….
Список использованной литературы …………………………………………...

Файлы: 1 файл

0077475_C3CBE_raschet_absorbcionnoy_ustanovki.docx

— 2.38 Мб (Скачать)

За последние годы стали применяться  спиральные насадки, выполненные из металлических лент и проволоки, различные металлические сетчатые насадки (рис.1.15б), а также насадка из стеклянного волокна.

При выборе размеров насадки следует  учитывать, что чем больше размеры  ее элемента, тем выше допустимая скорость газа (и соответственно – производительность абсорбера), и ниже его гидравлическое сопротивление. Общая стоимость абсорбера с насадкой из элементов больших размеров будет ниже за счет уменьшения диаметра аппарата, несмотря на то, что его высота несколько увеличится по сравнению с высотой аппарата, имеющегося насадку меньших размеров (вследствие снижения величины удельной поверхности насадки и интенсивности массопередачи).                                    

Мелкая насадка предпочтительнее также при проведении процесса абсорбции под повышенным давлением, так как в этом случае гидравлическое сопротивление абсорбера не имеет существенного значения. Кроме того, мелкая насадка, обладающая большей удельной поверхностью, имеет преимущества перед крупной тогда, когда для осуществления процесса абсорбции необходимо большое число единиц переноса или теоретических ступеней изменения концентраций.

Основными достоинствами насадочных колонн являются простота устройства и низкое гидравлическое сопротивление. Недостатки: трудность отвода тепла и плохая смачиваемость насадки при низких плотностях орошения. Отвод тепла из этих аппаратов и улучшение смачиваемости достигается путем рециркуляции абсорбента, что усложняет и удорожает абсорбционную установку. Для проведения одного и того же процесса требуются насадочные колонны обычно большого объема, чем барботажные.

Насадочные колонны мало пригодны при работе с загрязненными жидкостями. Для таких жидкостей в последнее время стали применять абсорберы с «плавающей» насадкой. В этих абсорберах в качестве насадки используют главным образом легкие полые или сплошные пластмассовые шары, которые при достаточно высоких скоростях газа, переходят во взвешенное состояние.

В абсорберах с «плавающей» насадкой допустимы более высокие скорости газа, чем в абсорберах с неподвижной  насадкой. При этом увеличение скорости газа приводит к большему расширению слоя шаров и, следовательно, к незначительному  увеличению гидравлического сопротивления аппарата /1/.

 

1.3.3. Барботажные (тарельчатые) абсорберы.

Тарельчатые абсорберы представляют собой, как правило, вертикальные колонны, внутри которых на определенном расстоянии друг от друга размещены горизонтальные перегородки – тарелки. С помощью тарелок осуществляется направленное движение фаз и многократное взаимодействие жидкости и газа.

В настоящее время в промышленности применяются разнообразные конструкции  тарельчатых аппаратов. По способу  слива жидкости с тарелок барботажные абсорберы можно подразделить на колонны:

1) с тарелками со сливными  устройствами;

2) с тарелками без сливных  устройств.

Тарельчатые колонны со сливными устройствами. В этих колоннах перелив жидкости с тарелки на тарелку осуществляется при помощи специальных устройств – сливных трубок, карманов и т.п. Нижние колонны трубок погружены в стакан на нижерасположенных тарелках и образуют гидравлические затворы, исключающие возможность прохождения газа через сливное устройство.

Принцип работы колонн такого типа виден  из рис.1.16, где в качестве примера показан абсорбер с ситчатыми тарелками. Жидкость поступает на верхнюю тарелку 1, сливается с тарелки на тарелку через переливные устройства 2 и удаляется из нижней части колонны. Газ поступает в нижнюю часть аппарата, проходит последовательно сквозь отверстия или колпачки каждой тарелки. При этом газ распределяется в виде пузырьков и струй в слое жидкости на тарелке, образую на ней слой пены, являющийся основной областью массообмена и теплообмена на тарелке. Отработанный газ удаляется сверху колонны.

Переливные трубки располагают  на тарелках таким образом, чтобы  жидкость на соседних тарелках протекала  во взаимнопротивоположных направлениях. За последнее время все шире применяют сливные устройства в виде сегментов, вырезанных в тарелке и ограниченных порогом – переливом.

              Тарельчатая колонна со сливными  устройствами

                     1 – тарелка, 2 – сливные устройства

                                                   Рис.1.16

К тарелкам со сливными устройствами относятся: ситчатые, колпачковые, клапанные и балластные, пластинчатые.

Гидродинамические режимы работы тарелок. Эффективность тарелок любых  конструкций в значительной степени  зависит от гидродинамических режимов  их работы. Поэтому до описания основных конструкций тарелок рассмотрим эти режимы.

В зависимости от скорости газа и  плотности орошения различают три  основных гидродинамических режима работы барботажных тарелок: пузырьковый, пенный и струйный, или инжекционный. Эти режимы отличаются структурой барботажного слоя, которая в основном определяет его гидравлическое сопротивление и высоту, а также величину поверхности контакта фаз.

Пузырьковый режим. Такой режим  наблюдается при небольших скоростях  газа, когда он движется сквозь слой жидкости в виде отдельных пузырьков. Поверхность контакта фаз на тарелке, работающей в пузырьковом режиме, невелика.

Пенный режим. С увеличением  расхода газа выходящие из отверстия  и прорези отдельные пузырьки сливаются в сплошную струю, которая на определенном расстоянии от места истечения разрушается в следствие сопротивления барботажного слоя с образованием большого количества пузырьков. При этом на тарелке возникает газо-жидкостная дисперсная система – пена, которая является нестабильной и разрушается сразу же после прекращения подачи газа. В указанном режиме контактирование газа и жидкости происходит на поверхности пузырьков и струй газа, а также на поверхности капель жидкости, которые в большом количестве образуются над барботажным слоем при выходе пузырьков газа из барботажного слоя и разрушения их оболочек. При пенном режиме поверхность контакта фаз на барботажных тарелках максимальна.

Струйный (инжекционный) режим. При  дальнейшем увеличении скорости газа длина газовых струй увеличивается, и они выходят на поверхность  барботажного слоя, не разрушаясь и образуя большое количество крупных брызг. Поверхность контакта фаз в условиях такого гидродинамического режима резко снижается.

Следует отметить, что переход от одного режима к другому происходит постепенно. Общие методы расчета  границ гидродинамических режимов (критических точек) для барботажных тарелок отсутствуют. Поэтому при проектировании тарельчатых аппаратов обычно расчетным путем определяют скорость газа, соответствующую нижнему и верхнему пределам работы тарелки и затем выбирают рабочую скорость газа.

Ситчатые тарелки.

Колонна с ситчатыми тарелками (рис.1.17) представляет собой вертикальный цилиндрический корпус 1 с горизонтальными тарелками 2, в которых равномерно по всей поверхности просверлено значительное число отверстий диаметром 1-5 мм. Для слива жидкости и регулирования ее уровня на тарелке служат переливные трубки 3, нижние концы которых погружены в стаканы 4.

 

 

 

                                               Ситчатая колонна

а – схема устройства колонны, б – схема работы тарелки, 1 – корпус,

2 - тарелка, 3 – переливная труба, 4 – стакан

Рис.1.17

 

Газ проходит сквозь отверстия тарелки  и распределяется в жидкости в  виде мелких струек и пузырьков. При слишком малой скорости газа жидкость может просачиваться (или «проваливаться») через отверстия тарелки на нижерасположенную, что должно привести к существенному снижению интенсивности массопередачи. Поэтому газ должен двигаться с определенной скоростью и иметь давление, достаточное для того, чтобы преодолеть давление слоя жидкости на тарелке и предотвратить стекание жидкости через отверстия тарелки.

Ситчатые тарелки отличаются простотой устройства, легкостью монтажа, осмотра и ремонта. Гидравлическое сопротивление этих тарелок невелико. Ситчатые тарелки устойчиво работают в довольно широком интервале скоростей газа, причем в определенном диапазоне нагрузок по газу и жидкости эти тарелки обладают высокой эффективностью. Вместе с тем ситчатые тарелки чувствительны к загрязнениям и осадкам, которые забивают отверстия тарелок. В случае внезапного прекращения поступления газа  или значительного снижения его давления с ситчатых тарелок сливается вся жидкость, и для возобновления процесса требуется вновь запускать колонну.

Разновидностью абсорберов с ситчатыми тарелками являются так называемые пенные абсорберы, тарелки которых отличаются от ситчатых конструкцией переливного устройства. При одинаковом числе тарелок эффективность пенных аппаратов выше, чем эффективность абсорберов с ситчатыми тарелками. Однако вследствие большой высоты пены на тарелках гидравлическое сопротивление пенных абсорберов значительно, что ограничивает область их применения.

Колпачковые тарелки.

Менее чувствительны к загрязнениям, чем колонны с ситчатыми тарелками, и отличаются более высоким интервалом устойчивой работы колонны с колпачковыми тарелками (рис.1.18). Газ на тарелку 1 поступает по патрубкам 2, разбиваясь затем прорезями колпачка 3 на большое число отдельных струй. Прорези колпачков наиболее часто выполняются в виде зубцов треугольной или прямоугольной формы. Далее газ проходит через слой жидкости, перетекающей по тарелке от одного сливного устройства 4 к другому. При движении через слой значительная часть мелких струй распадается и газ распределяется в жидкости в виде пузырьков. Интенсивность образования пены и брызг на колпачковых тарелках зависит от скорости движения газа и глубины погружения колпачка в жидкость.

                               Схема работы колпачковой тарелки

1 –тарелка, 2 – газовые патрубки, 3 – колпачки, 4 – сливные трубки

                                                      Рис.1.18

 

На рис.1.19 показана схема работы колпачка при неполном (а) и полном (б) открытии прорезей, причем в последнем  случае колпачок работает наиболее эффективно. Сечение и форма прорезей колпачка имеют второстепенное значение, но желательно устройство узких прорезей, так как при этом газ разбивается на более мелкие струйки, что способствует увеличению поверхности соприкосновения фаз. Для создания большой поверхности контакта фаз на тарелках обычно устанавливают значительное число колпачков, расположенных на небольшом расстоянии друг от друга.

Схема работы колпачка при неполном  (а), и полном (б) открытии прорезей

               1 –тарелка, 2 –колпачок, 3 – газовый патрубок

                                                        Рис.1.19

 

Колпачковые тарелки изготавливают с радиальным или диаметральным переливами жидкости. Тарелка с радиальным переливом жидкости (рис.1.20а) представляет собой стальной диск 1, который крепится на прокладке 2 болтами 3 к опорному кольцу 4. Колпачки 5 расположены на тарелке в шахматном порядке. Жидкость переливается на лежащую ниже тарелку по периферийным сливным трубкам 6, движется к центру и сливается на следующую тарелку по центральной трубке 7, затем снова течет к периферии т.д.

 

         Колпачковая тарелка с различными переливами жидкости

а – радикальный перелив, 1 – диск, 2 – прокладка, 3 – болты, 4 – опорное кольцо, 5 – колпачки, 6 – периферийные переливные устройства, 7 – центральная сливная трубка, б – диаметральный перелив, 1 – диск, 2 – опорный лист, 3 - приёмный порог, 4 – сливной порог, 5 – сменная гребёнка, 6 – перегородка, 7 – колпачки

                                                     Рис.1.20

 

Тарелка с диаметральным переливом  жидкости (рис.1.20б) представляет собой срезанный с двух сторон диск 1, установленный на опорном листе 2. С одной стороны тарелка ограничена приемным порогом 3, а с другой – сливным порогом 4 со сменной гребенной 5, при помощи которой регулируется уровень жидкости на тарелке. В тарелке этой конструкции периметр слива увеличен путем замены сливных трубок сегментообразными отверстиями, ограниченными перегородками 6, что снижает вспенивание жидкости при ее переливе.

На рис.1.21 показана распространенная конструкция штампованного капсюльного колпачка. Он состоит из патрубка 1, который развальцован в отверстии тарелки 2, и планки 3, приваренной к верхней части патрубка. К планке с помощью болта 4 крепится колпачок 5 диаметром 80-150 мм, закрепляемый на требуемой высоте контргайкой.

                      Устройство капсюльного колпачка

1 – паровой патрубок, 2 – тарелка, 3 – поперечная планка,

4 – болт, 5 – колпачок

                                              Рис.1.21

 

Колпачковые тарелки устойчиво работают при значительных изменениях нагрузок по газу и жидкости. К их недостаткам следует отнести сложность устройства и высокую стоимость, низкие предельные нагрузки по газу, относительно высокое гидравлическое сопротивление, трудность очистки. Поэтому колонны с колпачковыми тарелками постепенно вытесняются новыми, более прогрессивными конструкциями тарельчатых аппаратов.

Информация о работе Расчёт абсорбционной установки