Расчет установки для абсорбции диоксида углерода водой

Автор: Пользователь скрыл имя, 02 Ноября 2012 в 21:29, курсовая работа

Краткое описание

Одним из основных процессов является прегонка (ректификация) – процесс разделения жидких смесей, основаный на различии давления паров компонентов смеси. Этот процесс применяется для разделения жидкого воздуха в процессе производства кислорода, разделения воды и азотной кислоты в производстве азотной кислоты и во многих других химимческих производствах.

Оглавление

ВВЕДЕНИЕ 6
1. ЛИТЕРАТУРНЫЙ ОБЗОР 7
1.1 Теоретические основы абсорбции 7
1.2 Основные технологические схемы для проведения процесса абсорбции 8
1.3 Типовое оборудование для проектируемой установки 9
1.3.1 Тарельчатые колонны со сливными устройствами. 11
1.3.2 Колонны с тарелками без сливных устройств. 13
1.3.3 Насадочные абсорберы 15
2. ОБОСНОВАНИЕ И ОПИСАНИЕ ТЕХНОЛОГИЧЕСКОЙ СХЕМЫ 18
3. РАСЧЕТ АБСОРБЕРА 19
3.1. Определение условий равновесия процесса 19
3.2. Расчет материального баланса 21
3.2.1. Определение молярного расхода компонентов газовой смеси. 21
3.2.2. Определение расхода поглотителя СО2 из газовой смеси. 22
3.2.3. Определение рабочей концентрации СО2 в поглотителе на выходе из абсорбера. 22
3.2.4. Построение рабочей линии абсорбции СО2 и определение числа единиц переноса. 23
3.3. Определение рабочей скорости газа и диаметра аппарата 23
3.4. Определение высоты абсорбера 26
3.5. Определение гидравлического сопротивления абсорбера 29
3.6. Расчет диаметров штуцеров и труб 29
4. ПОДРОБНЫЙ РАСЧЕТ ТЕПЛООБМЕННИКА ДЛЯ ОХЛАЖДЕНИЯ ПОГЛОТИТЕЛЯ 31
4.1. Тепловой баланс 31
4.2. Определение ориентировочной поверхности теплообмена 31
4.3. Выбор теплообменника 32
4.4. Уточнение tср. 33
4.5. Определение коэффициента теплоотдачи для поглотителя 34
4.6. Определение коэффициента теплоотдачи для охлаждающей воды 35
4.7. Определение коэффициента теплопередачи и истинной поверхности теплообмена 37
4.8. Определение гидравлического сопротивления теплообменника 37
5. ПОДБОР ВСПОМОГАТЕЛЬНОГО ОБОРУДОВАНИЯ 39
5.1. Ориентировочный расчет теплообменника для охлаждения
газовой смеси 39
5.2. Ориентировочный расчет насоса 40
5.2.1. Выбор трубопровода для всасывающей и нагнетательной линии. 41
5.2.2. Определение потерь на трение и местные сопротивления. 41
5.2.3. Выбор насоса. 42
5.3. Выбор компрессора 43
ЗАКЛЮЧЕНИЕ 44
СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ 45

Файлы: 1 файл

Жигарь.doc

— 1.01 Мб (Скачать)


БЕЛОРУССКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНОЛОГИЧЕСКИЙ  УНИВЕРСИТЕТ

 

Кафедра процессов и  аппаратов химических производств

 

 

 

 

 

РАСЧЕТНО - ПОЯСНИТЕЛЬНАЯ ЗАПИСКА 
к курсовому проекту

по курсу “Процессы и аппараты химической технологии”

на тему "Расчет установки для абсорбции диоксида углерода водой"

 

 

 

Выполнил: студент заочного факультета

Жигарь В.А.

Руководитель:  Саевич Н.П.

 

 

 

 

 

МИНСК 2003

 

РЕФЕРАТ

Отчет 45 стр., 17 рисунков, 7 источников.

 

АБСОРБЕР, ТАРЕЛКА, ДИОКСИД УГЛЕРОДА, ПОГЛОТИТЕЛЬ, АБСОРБЕНТ, АБСОРБАТ, КОЛОННА, ТЕПЛООБМЕННИК, НАСОС, КОМПРЕССОР

 

Объектом проектирования является установка для очистки воздуха от диоксида углерода.

Цель работы – выбор  аппаратов для осуществления  процесса очистки воздуха от диоксида углерода и их расчет.

В курсовой работе приведен литературный обзор, в котором описана конструкция и принцип действия аппаратов, используемых для абсорбции тарельчатых и насадочных абсорберов, описаны основные типы тарелок для абсорбционных колонн. В курсовой работе также приведены обоснование и расчет аппарата, применяемого для абсорбции диоксида углерода - насадочного абсорбера с насадкой: керамические кольца Рашига, осуществлен подбор вспомогательного оборудования: теплообменника для охлаждения газовой смеси и поглотителя, насоса для подачи поглотителя и компрессора.

В результате проектирования была теоретически обоснована и рассчитана линия  абсорбции диоксида углерода.

 

 

СОДЕРЖАНИЕ

 

 

ВВЕДЕНИЕ

В химической промышленности осуществляются разнообразные процессы, в которых  исходные материалы в результате химического взаимодействия претерпевают глубокие превращения, сопровождающиеся изменением агрегатного состояния внутренней стуктуры и состава веществ. Наряду с химическими реакциями, являющимися основой химико-технологических процессов, последние обычно включают многочисленные физические (в том числе и механические) и физико-химические процессы. К таким процессам относятся: перемещение жидкостей и твердых материалов, измельчение и классификация последних, сжатие и транспортирование газов, нагревание и охлаждение веществ, их перемешивание, разделение жидких и газовых неоднородных смесей, выпаривание растворов, сушка материалов и другие процессы. При этом способ проведения указанных процессов часто определяет возможность осуществления, эффективность и рентабельность производительного процесса в целом. Эти процессы в различных производствах проводятся в анологичных по принципу действия машинах и аппаратах.

Одним из основных процессов является прегонка (ректификация) – процесс  разделения жидких смесей, основаный  на различии давления паров компонентов  смеси. Этот процесс применяется  для разделения жидкого воздуха  в процессе производства кислорода, разделения воды и азотной кислоты в производстве азотной кислоты и во многих других химимческих производствах.

Также широко распространены и абсорбционные  процессы, они являются основной технологичекой стадией ряда важнейших производств: абсорбция SO3 в производстве серной кислоты, абсорбция HCl с получением соляной кислоты, абсорбция NH3, паров C6H6, H2S и других компонентов из коксового газа и т.д.

 

  1. ЛИТЕРАТУРНЫЙ ОБЗОР

Абсорбцией называют процесс поглощения газов или паров из газовых или парогазовых смесей жидкими поглотителями (абсорбентами).

При физической абсорбции поглощаемый  газ (абсорбтив) не взаимодействует химически с абсорбентом. Если же абсорбтив образует с абсорбентом химическое соединение, то процесс называется хемосорбцией.

Физическая абсорбция в большинстве случаев обратима. На этом свойстве абсорбционных процессов основано выделение поглощенного газа из раствора — десорбция.

Сочетание абсорбции с десорбцией позволяет многократно применять  поглотитель и выделять поглощенный компонент в чистом виде. Во многих случаях проводить десорбцию не обязательно, так как абсорбент и абсорбтив представляют собой дешевые или отбросные продукты, которые после абсорбции можно вновь не использовать (например, при очистке газов).

В промышленности процессы абсорбции применяются главным образом для извлечения ценных компонентов из газовых смесей или для очистки этих смесей от вредных примесей.

Абсорбционные процессы широко распространены в химической технологии и являются основной технологической стадией ряда важнейших производств (например, абсорбция SO2 в производстве серной кислоты; абсорбция НС1 с получением соляной кислоты; абсорбция окислов азота водой в производстве азотной кислоты; абсорбция NH3, паров C6H6, H2S и других компонентов из коксового газа; абсорбция паров различных углеводородов из газов переработки нефти и т. п.). Кроме того, абсорбционные процессы являются основными процессами при санитарной очистке выпускаемых в атмосферу отходящих газов от вредных примесей (например, очистка топочных газов от SO2; очистка от фтористых соединений газов, выделяющихся в производстве минеральных удобрений, и т. д.).

    1. Теоретические основы абсорбции

 

При абсорбции содержание газа в растворе зависит от свойств  газа и жидкости, давления, температуры и состава газовой фазы (парциального давления растворяющегося газа в газовой смеси).

В состоянии равновесия при постоянных температуре и общем давлении зависимость между парциальным  давлением газа А (или его концентрацией) и составом жидкой фазы однозначна. Эта зависимость выражается законом Генри:

 

  ,  (1.1)

где yA* – равновесная концентрация извлекаемого компонента в газовой фазе, m – коэффициент распределения, x – концентрация газа в растворе.

Уравнение (1.1) показывает, что зависимость между концентрациями данного компонента в газовой смеси и в равновесной с ней жидкости выражается прямой линией, проходящей через начало координат и имеющей угол наклона, тангенс которого равен т. Числовые значения величины т зависят от температуры и давления в системе: уменьшаются с увеличением давления и снижением температуры. Таким образом, растворимость газа в жидкости увеличивается с повышением давления и снижением температуры

Когда в равновесии с  жидкостью находится смесь газов, закону Генри может следовать каждый из компонентов смеси в отдельности.

Закон Генри применим к растворам  газов, критические температуры  которых выше температуры раствора, и справедлив только для идеальных  растворов. Поэтому он с достаточной  точностью применим лишь к сильно разбавленным реальным растворам, приближающимся по свойствам к идеальным, т. е. соблюдается при малых концентрациях растворенного газа или при его малой растворимости. Для хорошо растворимых газов, при больших концентрациях их в растворе, растворимость меньше, чем следует из закона Генри. Для систем, не подчиняющихся этому закону, коэффициент от в уравнении (1.1) является величиной переменной и линия равновесия представляет собой кривую, которую строят обычно по опытным данным.

Для описания равновесия между газом и жидкостью уравнение (1.1) применимо только при умеренных давлениях, невысоких температурах и отсутствии химического взаимодействия между газом и поглотителем.

При повышенных давлениях (порядка  десятков атмосфер и выше) равновесие между газом и жидкостью не следует закону Генри, так как изменение объема жидкости вследствие растворения в ней газа становится соизмеримым с изменением объема данного газа.

    1. Основные технологические схемы для проведения процесса абсорбции

 

Промышленные схемы  абсорбционных установок бывают противоточные, прямоточные, одноступенчатые с рециркуляцией и многоступенчатые с рециркуляцией.

При противоточной схеме  абсорбции (рис. 1.1.а) газ проводит через абсорбер снизу вверх, а жидкость стекает сверху вниз. Так как при противотоке уходящий газ соприкасается со свежим абсорбентом, над которым парциальное давление поглощаемого компонента равно нулю (или очень мало), то можно достичь более полного извлечения компонента из газовой смеси, чем при прямоточной схеме (рис. 1.1.б), где уходящий газ соприкасается с концентрированным раствором поглощаемого газа. Кроме того, при противотоке можно достигнуть более высокой степени насыщения поглотителя извлекаемым компонентом, что, в свою очередь, приводит к уменьшению расхода абсорбента.

 

Схемы противоточной  и прямоточной абсорбции

а  б

а – противоточная  абсорбция; б – прямоточная абсорбция;

Рис. 1.1.

 

Для отвода тепла, выделяющегося при абсорбции, а также для повышения плотности орошения в колоннах с насадкой часто применяют схемы с рециркуляцией части абсорбента.

На рис. 1.2 представлена схема одноступенчатой абсорбции с частичной рециркуляцией абсорбента. Часть жидкости концентрацией Xк отбирается из нижней части колонны в качестве конечного продукта, а другая ее часть возвращается насосом на верх колонны, где жидкость присоединяется к поглотителю, имеющему начальную концентрацию Xн. В результате образуется смесь, концентрация которой равна Xсм, при чем Xсм> Xн.

Жидкость, возвращаемая в колонну, может быть попутно  охлаждена, что приведет к понижению температуры жидкости, орошающей колонну, и соответственно — к понижению температуры процесса.

 

Схема одноступенчатой абсорбции  с рециркуляцией жидкости

Рис. 1.2.

    1. Типовое оборудование для проектируемой установки

 

Основное требование, предъявляемое к конструкции устройства для проведения абсорбционных процессов,—создание развитой поверхности контакта фаз. По способу образования такой поверхности аппарата для проведения процессов абсорбции условно подразделяют на следующие группы:

  1. поверхностные, в которых контакт фаз происходит на зеркале жидкости, поверхности жидкой пленки, стекающей по каналам различной формы (пленочные), элементам насадки (насадочные) или образующейся на элементах движущихся частей (механические);
  2. барботажные, в которых контакт происходит на поверхности пузырьков и струй, возникающих при пропускании газа через слой жидкости в аппарате, на тарелке, в затопленной насадке либо в пространстве с перемешивающими устройствами (соответственно барботажные, тарельчатые, с подвижной насадкой. механические);
  3. распыливающие, в которых контакт происходит на поверхности капель распыляемой жидкости (полые, скоростные прямоточные, механические).

Указанную классификацию нельзя понимать буквально, поскольку постоянное совершенствование  конструкций абсорберов связано не только с улучшением характеристики какого-либо одного способа организации контакта фаз, но и подчас всей их совокупности.

На рис. 1.3 представлены пленочные абсорберы: трубчатый противоточный и с восходящим движением пленки.

Аппараты просты по устройству, однако в них очень трудно организовать равномерное распределение жидкости по сечению труб, в силу чего эффективность  их невелика за исключением прямоточного абсорбера, в котором за счет больших  скоростей газа (40 м/с и более) можно достичь высоких значений массопередачи.

 

Пленочные абсорберы

а б

а—трубчатый; б—с восходящим движением  жидкой пленки; 
1—трубы; 2—трубные решетки; 3—щели; 4—патрубки; 5—камера

Рис. 1.3.

 

Тарельчатые абсорберы представляют собой, как правило, вертикальные колонны, внутри которых на определенном расстоянии друг от друга размещены горизонтальные перегородки — тарелки. С помощью тарелок осуществляется направленное движение фаз и многократное взаимодействие жидкости и газа.

В настоящее время в промышленности применяются разнообразные конструкции тарельчатых аппаратов. По способу слива жидкости с тарелок барботажные абсорберы можно подразделить на колонны: 1) с тарелками со сливными устройствами и 2) с тарелками без сливных устройств.

      1. Тарельчатые колонны со сливными устройствами.

В этих колоннах перелив жидкости с тарелки на тарелку осуществляется при помощи специальных устройств — сливных трубок, карманов и т. п. Нижние концы трубок погружены в стакан на нижерасположенных тарелках и образуют гидравлические затворы, исключающие возможность прохождения газа через сливное устройство.

Принцип работы колонн такого типа виден  из рис. 1.4, где в качестве примера показан абсорбер с ситчатыми тарелками. Жидкость поступает на верхнюю тарелку 1, сливается с тарелки на тарелку через переливные устройства 2 и удаляется из нижней части колонны. Газ поступает в нижнюю часть аппарата, проходит последовательно сквозь отверстия или колпачки каждой тарелки. При этом газ распределяется в виде пузырьков и струй в слое жидкости на тарелке, образуя на ней слой пены, являющийся основной областью массообмена и теплообмена на тарелке. Отработанный газ удаляется сверху колонны.

 

Тарельчатая колонна со сливными устройствами.

1–тарелка, 2–сливные устройства.

Информация о работе Расчет установки для абсорбции диоксида углерода водой