Перспективные энергетические установки

Автор: Пользователь скрыл имя, 07 Декабря 2011 в 01:01, реферат

Краткое описание

Традиционные газопоршневые, дизельные и газотурбинные установки имеют множество недостатков, главными из которых являются довольно низкий КПД и экологический вред.

В качестве наиболее перспективных энергетических установок для малой энергетики могут быть рассмотрены получающие всё большее распространение в мире установки на основе топливных элементов.

Основными преимуществами установок на основе топливных элементов по сравнению с традиционными по экономическим и потребительским качествам являются:

Файлы: 1 файл

основы энергосбережения.docx

— 33.13 Кб (Скачать)
 

Традиционные  газопоршневые, дизельные  и газотурбинные  установки имеют  множество недостатков, главными из которых  являются довольно низкий КПД и экологический  вред.

В качестве наиболее перспективных  энергетических установок  для малой энергетики могут быть рассмотрены  получающие всё большее  распространение  в мире установки  на основе топливных  элементов.

Основными преимуществами установок  на основе топливных  элементов по сравнению  с традиционными  по экономическим  и потребительским  качествам являются:

значительно меньшие выбросы  вредных веществ  в окружающую среду;

значительно меньшие показатели уровня шума и вибрации;

эффективное использование топлива  и высокий КПД;

низкие  затраты на эксплуатацию (не требуются замена масла, присутствие  оператора);

плавные вольт-амперные характеристики, высокая маневренность  и эффективность  во всем диапазоне  нагрузок. 

Термоэлектрогенератор 

Топливный элемент  

МГД-генератор  

Магнитогидродинамический генератор, МГД-генератор — энергетическая установка, в которой энергия рабочего тела (жидкой или газообразнойэлектропроводящей среды), движущегося в магнитном поле, преобразуется непосредственно в электрическую энергию. 

Также как и в  обычных машинных генераторах, принцип работы МГД-генератора основан на явлении электромагнитной индукции, то есть на возникновении тока в проводнике, пересекающем силовые линии магнитного поля. Но, в отличие от машинных генераторов, в МГД-генераторе проводником является само рабочее тело, в котором при движении поперёк магнитного поля возникают противоположно направленные потоки носителей зарядов противоположных знаков.

Рабочим телом МГД-генератора могут служить следующие среды:

  • Электролиты
  • Жидкие металлы
  • Плазма (ионизированный газ)

Первые МГД-генераторы использовали в качестве рабочего тела электропроводные жидкости (электролиты), в настоящее время применяют плазму, в которой носителями зарядов являются в основном свободные электроны и положительные ионы, отклоняющиеся в магнитном поле от траектории, по которой газ двигался бы в отсутствие поля. В таком генераторе может наблюдаться дополнительное электрическое поле, так называемое поле Холла (см. Эффект Холла), которое объясняется смещением заряженных частиц между соударениями в сильном магнитном поле в плоскости, перпендикулярной магнитному полю. 

Классификация

По  источнику тепла

  • Реактивные двигатели;
  • Ядерные реакторы;
  • Теплообменные устройства;

По  рабочему телу

  • Продукты сгорания ископаемых топлив
  • Инертные газы с присадками щелочных металлов (или их солей);
  • Пары щелочных металлов;
  • Двухфазные смеси паров и жидких щелочных металлов;
  • Жидкие металлы и электролиты.

По  типу рабочего цикла

  • МГД-генераторы с открытым циклом. В данном случае продукты сгорания являются рабочим телом, а использованные газы после удаления из них присадки щелочных металлов выбрасываются в атмосферу.
  • МГД-генераторы с замкнутым циклом. Здесь тепловая энергия, полученная при сжигании топлива, передаётся в теплообменнике рабочему телу, которое затем, пройдя МГД-генератор, возвращается через компрессор, замыкая цикл.

По  способу отвода электроэнергии

  • Кондукционные. В рабочем теле, протекающем через поперечное магнитное поле, возникает электрический ток, который через съёмные электроды, вмонтированные в боковые стенки канала, замыкается на внешнюю цепь. В зависимости от изменения магнитного поля или скорости движения рабочего тела такой МГД-генератор может генерировать постоянный или пульсирующий ток
  • Индукционные. В индукционных МГД-генераторах электроды отсутствуют. Такие установки генерируют только переменный ток и требуют создания бегущего вдоль канала магнитного поля.

По  форме канала

  • Линейные — для кондукционных и индукционных генераторов;
  • Дисковые и коаксиальные холловские — в кондукционных;

По  системам соединений электродов

  • Фарадеевский генератор со сплошными или секционированными электродами. Секционирование электродов в фарадеевском МГД-генераторе делается для того, чтобы уменьшить циркуляцию тока вдоль канала и через электроды (эффект Холла) и тем самым направить носители зарядов перпендикулярно оси канала на электроды и в нагрузку; чем значительнее эффект Холла, тем на большее число секций необходимо разделить электроды, причём каждая пара электродов должна иметь свою нагрузку, что весьма усложняет конструкцию установки.
  • Холловский генератор, в котором расположенные друг против друга электроды короткозамкнуты, а напряжение снимается вдоль канала за счёт наличия поля Холла. Применение наиболее выгодно при больших магнитных полях. За счёт наличия продольного электрического поля, можно получить значительное напряжение на выходе генератора.
  • Сериесный генератор с диагональным соединением электродов.

Достоинства

Основное преимущество МГД-генератора — отсутствие в нём движущихся узлов или деталей, непосредственно участвующих в преобразовании тепловой энергии в электрическую. Это позволяет существенно увеличить начальную температуру рабочего тела и, следовательно, КПД электростанции.

В сочетании с  паросиловыми установками, МГД-генератор  позволяет получить большие мощности в одном агрегате, до 500—1000 МВт.

Применение

Теоретически, существуют три направления промышленного  применения МГД-генераторов:

  1. Тепловые электростанции с МГД-генератором на продуктах сгорания топлива (открытый цикл); такие установки наиболее просты и имеют ближайшую перспективу промышленного применения;
  2. Атомные электростанции с МГД-генератором на инертном газе, нагреваемом в ядерном реакторе (закрытый цикл); перспективность этого направления зависит от развития ядерных реакторов с температурой рабочего тела свыше 2000 K;
  3. Термоядерные электростанции безнейтронного цикла (например, D + 3He → p + 4He + 18,353 МэВ) c МГД-генератором на высокотемпературной плазме;
  4. Циклы с МГД-генератором на жидком металле, которые перспективны для атомной энергетики и для специальных энергетических установок сравнительно небольшой мощности.

Энергетические установки  с МГД-генератором могут применяться  также как резервные или аварийные  источники энергии в энергосистемах, для бортовых систем питания космической  техники, в качестве источников питания  различных устройств, требующих  больших мощностей на короткие промежутки времени (например, для питания электроподогревателей аэродинамических труб и т. п.).

Несмотря на заманчивые перспективы и бурное развитие исследований в области МГД-генераторов в 1970-е, устройства на их основе так и не нашли широкого промышленного применения вплоть до настоящего времени.

 

Топливный элемент 

Топливный элемент — электрохимическое устройство, подобное гальваническому элементу, но отличающееся от него тем, что вещества для электрохимической реакции подаются в него извне — в отличие от ограниченного количества энергии, запасенного в гальваническом элементе или аккумуляторе.

Топливный элементы осуществляют прямое превращение  энергии топлива  в электричество  минуя малоэффективные, идущие с большими потерями, процессы горения. Это электрохимическое  устройство в результате высокоэффективного «холодного» горения  топлива непосредственно  вырабатывает электроэнергию.

Применение топливных  элементов

Стационарные  приложения

  • производство электрической энергии (на электрических станциях),
  • аварийные источники энергии,
  • автономное электроснабжение,

Транспорт

  • электромобили, автотранспорт,
  • морской транспорт,
  • железнодорожный транспорт, горная и шахтная техника
  • вспомогательный транспорт (складские погрузчики, аэродромная техника и т. д.)

Бортовое  питание

  • авиация, космос,
  • подводные лодки, морской транспорт,

Мобильные устройства

  • портативная электроника,
  • питание сотовых телефонов,
  • зарядные устройства для армии,
  • роботы.
 

Преимущества  водородных топливных  элементов

Высокий КПД

  • У топливных элементов нет жёсткого ограничения на КПД, как у тепловых машин (КПД цикла Карно является максимально возможным КПД среди всех тепловых машин с такими же минимальной и максимальной температурами).
  • Высокий КПД достигается благодаря прямому превращению энергии топлива в электроэнергию. Если в дизель-генераторных установках топливо сначала сжигается, полученный пар или газ вращает турбину или вал двигателя внутреннего сгорания, которые в свою очередь вращают электрический генератор. Результатом становится КПД максимум в 42 %, чаще же составляет порядка 35-38 %. Более того, из-за множества звеньев, а также из-за термодинамических ограничений по максимальному КПД тепловых машин, существующий КПД вряд ли удастся поднять выше. У существующих топливных элементов КПД составляет 60-80 %[8],
  • КПД почти не зависит от коэффициента загрузки,

Экологичность

В воздух выделяется лишь водяной пар, что является безвредным для окружающей среды. Но это лишь в локальном масштабе. Нужно учитывать  экологичность в тех местах, где  производятся данные топливные ячейки, так как производство их само по себе уже составляет некую угрозу (ведь производство не может быть безвредным).

Компактные  размеры

Топливные элементы легче и занимают меньший размер, чем традиционные источники питания. Топливные элементы производят меньше шума, меньше нагреваются, более эффективны с точки зрения потребления топлива. Это становится особенно актуальным в военных приложениях. Например, солдат армии США носит 22 различных типа аккумуляторных батарей.[источник не указан 334 дняСредняя мощность батареи 20 ватт. Применение топливных элементов позволит сократить затраты на логистику, снизить вес, продлить время действия приборов и оборудования.

 
 
 

Термоэлектрогенератор

 
 

Термоэлектрогенератор — это техническое устройство, предназначенное для прямого преобразования тепловой энергии в электричество посредством использования в его конструкции термоэлементов (термоэлектрических материалов).

Информация о работе Перспективные энергетические установки