Автор: Пользователь скрыл имя, 22 Января 2012 в 11:30, контрольная работа
Технологические процессы порошковой металлургии нашли применение при производстве различных металлоизделий, которые известными традиционными способами изготовить было невозможно. Это твердые сплавы, пористые металлические подшипники и фильтры, фрикционные и антифрикционные материалы. Технологические процессы порошковой металлургии позволяют максимально эффективно использовать материалы, получать композиционные материалы с уникальными свойствами.
1. Основные понятия о технологических процессах порошковой металлургии. Структура и элементы технологических процессов порошковой металлургии. Оборудование. Оснастка. Изделия
1.1 Основные понятия о технологических процессах порошковой
металлургии..………………………………………………….…………….3
1.2 Структура и элементы технологических процессов порошковой
металлургии..………………………………………………………………
1.3 Оборудование. Оснастка. Изделия……………………………………..7
2. Технико-экономические показатели технологических
процессов порошковой металлургии……………………………………..20
3. Основные направления и перспективы развития технологических
процессов порошковой металлургии. Инновационные технологии
3.1 Основные направления и перспективы развития технологических
процессов порошковой металлургии……………………………….…….26
3.2 Инновационные технологии……………………………………………..2
Список использованных источников.…………………………………………..47
В
настоящее время метод
Методы распыления металлического расплава различаются по виду затрачиваемой энергии (нагрев индукционный или косвенный, электродуговой, электронный, лазерный, плазменный и др.), виду силового воздействия на расплав при диспергировании (механическое воздействие, энергия газовых и водяных потоков, силы гравитационные, центробежные, воздействия ультразвука и т.д.) и по типу среды для его создания и диспергирования (восстановительная, окислительная, инертная или какая-либо иная среда заданного состава, вакуум).
Сущность получения металлических порошков из расплава заключается в нарушении сплошности его потока (струи или пленки) под действием различных источников возмущений с возникновением дисперсных частиц. Центробежное распыление представляет собой один из основных видов диспергирования расплава. По методу вращающегося электрода распыление происходит в момент формирования расплава (рис. 1.5 - электрическая дуга, или электронный луч, плазма или другие источники энергии).
Рис.
1.5 - Схема центробежного распыления расплава.
Образовавшаяся на торце расходуемого электрода, вращающегося со скоростью 2000-20000 об/мин, пленка расплава толщиной 10-30 мкм под действием центробежных сил перемещается к его периферии и срывается с его кромки в виде частиц-капель преимущественно размером 100-200 мкм (увеличение диаметра расходуемого электрода и скорости его вращения приводит к уменьшению размера частиц-капель) Кристаллизация капель со скоростью охлаждения порядка 104°С/сек происходит в атмосфере инертного газа.
Рис. 1.6 - Схема диспергирования при автономной подаче жидкого металла
При других схемах диспергирования (рис. 1.6) плавление металла проводят автономно, вне зоны распыления. Когда струю расплава подают на вращающийся со скоростью до 24000 об/мин диск, на его вогнутой поверхности образуется пленка жидкого металла, от которой затем отрываются капли-частицы преимущественно размером <100 мкм и кристаллизуются в атмосфере инертного газа со скоростью 105 - 106 °С/сек.
В
последнее время активно
Рис.
1.7 - Схема получения распыленных и быстрозакаленных
порошков
На установке для сверхбыстрого охлаждения в вакууме или инертном газе (рис. 1.7, а) капли расплава 1 выдуваются аргоном из отверстия в графитовом тигле 2, находящемся в трубчатой индукционной печи 3, и попадают на медный крылообразный кристаллизатор 4, вращающийся со скоростью до 104 об/мин (встречная скорость движения капли и кристаллизатора до 500 м/с).
Высокоскоростное затвердевание расплава обеспечивает извлечение малых объемов металла кромкой быстровращающегося (2000-5000 об/мин) в вертикальной плоскости диска из высокотеплопроводного материала (рис. 7, б). При контакте с расплавом на кромке диска затвердевает некоторый слой металла, затем он выходит из расплава и охлаждается, после чего частица отделяется от кромки диска (скорость охлаждения 106-108 °С/с).
В любом случае методы распыления при кристаллизации капли расплава со скоростью более 106 °С/с приводят к получению порошков, частицы которых имеют аморфную структуру, придающую им чрезвычайно специфические свойства, позволяющие создавать уникальные материалы для различных отраслей техники.
Физико-химические способы получения порошков
1. Химическое восстановление:
- восстановление происходит из оксидов и других твердых соединений металлов. Этот способ является одним из наиболее распространенных и экономичных способов. Восстановителями служат газы (водород, конвертированный природный газ и др.), твердый углерод (кокс, сажа и др.) и металлы (натрий, кальций и др.). Исходным сырьем являются окисленные руды, рудные концентраты, отходы и побочные продукты металлургического производства (например, прокатная окалина), а также различные химические соединения металлов. Таким путем получают порошки Fe, Cu, Ni, Co, W, Mo, Ti, Ta, Zr, U и других металлов и их сплавов, а также соединений с неметаллами (карбиды, бориды и др.)
-
химическое восстановление
-
химическое восстановление
МеГх+ 0,5хН2 = Ме + хНГ (1)
где Г – хлор или фтор.
Для получения высокодисперсных порошков металлов или их соединений (карбидов, нитридов и др.) перспективны плазмохимические методы. Восстановителем служит водород или углеводороды и конвертированный природный газ. Низкотемпературную (4000-10000°С) плазму создают в плазмотроне электрической дугой высокой интенсивности, через которую пропускают какой-либо газ или смесь газов. В плазменной восстановительной струе происходит превращение исходных материалов в конденсированную дисперсную фазу. Метод используется для получения порошков тугоплавких металлов W, Mo, Ni.
2. Электролиз водных растворов или расплавленных солей различных металлов.
На катоде под действием электрического тока осаждают из водных растворов или расплавов солей чистые порошки практически любых металлов. Стоимость порошков высока из-за больших затрат электроэнергии и сравнительно низкой производительности электролизеров. Таким путем получают из водных растворов – порошки Cu, Ni, Fe, Ag, а из расплавленных сред – порошки Ta, Ti, Zr, Fe.
3. Диссоциация карбонилов.
Карбонилами называют соединения элементов с СО общей формулы Меа(СО)с. Карбонилы являются легколетучими, образуются при сравнительно небольших температурах и при нагревании легко разлагаются.
В промышленных масштабах диссоциацией карбонилов производят порошки Ni, Fe, Со, Сr, Мо, W и некоторых металлов платиновой группы.
Расширение производства карбонильных порошков существенно сдерживается их высокой стоимостью, так как они в десятки раз дороже восстановленных порошков аналогичных металлов.
4. Термодиффузионное насыщение.
Чередующиеся слои или смесь порошков разнородных металлов нагревают до температуры, обеспечивающей их активное взаимодействие. Получают порошки латуни, сплавов на основе хрома, высоколегированных сталей.
5. Испарение и конденсация.
Для получения порошка металл испаряют и затем конденсируют его пары на холодной поверхности. Порошок является тонкодисперсным, но содержит большое количество оксидов. Получают порошки Zn, Cd и других металлов с невысокой температурой испарения.
6. Межкристаллитная коррозия.
В компактном (литом) металле или сплаве при помощи химического травителя разрушают межкристаллитные прослойки. Получают порошки коррозионностойких и хромоникелевых сталей.
Формование. Цель формования порошков - получение полуфабрикатов (прутки, трубы, ленты) либо отдельных заготовок, по форме приближающихся к конечным изделиям. Во всех случаях после формования порошок из сыпучего тела превращается в пористый компактный материал, обладающий достаточной прочностью для сохранения приданной ему формы при последующих операциях. Методы формования порошковых заготовок весьма разнообразны. По времени действия их можно подразделить на прерывистые и непрерывные, по принципам приложения давления – на постепенно возрастающие, мгновенно возрастающие и вибрационные, по направлению или схеме формования - на односторонние, двусторонние, всесторонние и центробежные, по применяемой температуре - на холодное формование при комнатной температуре и горячее при повышенной, по атмосфере - на формование на воздухе, в вакууме и в инертной среде.
К прерывистым методам относится большинство случаев формования, когда имеет место поштучное изготовление изделий: формование на разного рода прессах (гидравлических, механических, вибрационных), а также различные виды изостатического (всестороннего) формования - гидростатическое, горячее изостатическое, взрывное.
К непрерывным методам, при помощи которых можно получать изделия значительной длины, относятся клиновое формование, мундштучное (экструзия) и прокатка металлических порошков. Кроме того, к методам формования относится так называемое шликерное литье, которое практически осуществляется без приложения давления.
Прерывистые методы формования:
1. Холодное формование на прессах. Наиболее распространенным способом формования порошковых материалов является холодное формование в закрытых формах, называемых пресс-формами. В результате холодного формования в закрытых пресс-формах получается заготовка, по форме и размерам соответствующая готовому изделию с припусками, необходимыми для прохождения последующих операция. Процесс такого формования состоит из сборки пресс-формы, дозировки и засыпки шихты в пресс-форму, самого формования и удаления изделий из пресс-формы. Дозировку шихты производят весовым или объемным способом. При массовом производстве и использовании автоматических прессов обычно применяется объемная дозировка.
2. Горячее формование. Горячее формование осуществляется в закрытых пресс-формах при повышенных и высоких температурах и возрастающем до заданной величины давлении. С повышением температуры уменьшается величина давления, необходимого для уплотнения порошка. Метод горячего формования позволяет получать изделия из порошков, не поддающихся формованию или спеканию обычными способами. При горячем формовании увеличение контакта между частицами достигается: 1) за счет их деформации внешними силами, 2) собственной температурной подвижностью атомов. При горячем формовании можно получить материал плотностью, приближающейся к теоретической, и со свойствами компактных металлов. Горячее формование осуществляется преимущественно на гидравлических прессах. Оно производится в пресс-формах, изготовляемых из жаропрочных сплавов (для низких температур прессования - до 1000°С), либо из графита для высокотемпературного прессования.
Горячее формование применяется только в ряде специальных случаев: при производстве твердых и жаропрочных материалов, алмазно-металлических сплавов и крупных изделий весом до 500 кг (например, твердосплавных прокатных валков). Кроме того, оно применяется при производстве тонких пластин, дисков и других деталей, которые коробятся при спекании и поэтому изготовление их холодным формованием затруднительно. Горячее формование менее производительно по сравнению с холодным, связано со значительным износом пресс-форм и трудностью подбора для них материала, способного выдерживать высокие температуры. Однако, несмотря на ряд трудностей, связанных с предотвращением окисления порошка, выбором материала пресс-формы, а также некоторым ограничением областей применения горячего формования, принципиальная ценность и перспективность метода очевидны, особенно для получения изделий большой плотности и с высокими механическими свойствами.