Автор: Пользователь скрыл имя, 14 Декабря 2012 в 20:41, курс лекций
Изучение истории электроэнергетики является своего рода приобщением, затрагивает побудительные и мотивационные стороны личности, экономические потребности. При этом возникает эффект присутствия, который позволяет быть как бы соучастником рассматриваемых событий. Исключительную роль для будущего инженера, ученого приобретает умение находить наиболее эффективные методы организации и управления производством, планирования и прогнозирования научно-технической деятельности. Опыт поколений показывает, что нужно хорошо знать прошлое, чтобы ориентироваться в настоящем и предвидеть будущее.
Раздел 1. Периоды развития энергетики
Введение в историю электроэнергетики 2
Периоды развития энергетики 4
Раздел 2. Основные этапы развития электротехники
Основные этапы развития электротехники 6
Первые генераторы электрического тока 10
Изобретение первого конденсатора 15
Первые аккумуляторы электрической энергии 16
Основные этапы развития электродвигателя 17
Основные этапы развития электромагнитных генераторов 22
Раздел 3. Переход энерг-кой техники на качественно новый уровень
этапы развития электрических сетей 59
Роль электрического освещения в становлении электроэнергетики 29
Развитие кабельной и изоляционной техники 33
Развитие генераторов и двигателей однофазного тока 35
Развитие однофазных трансформаторов 36
Первые исследования в области передачи электрической энергии на большие расстояния 40
Электростанции постоянного и однофазного переменного тока 44
Возникновение многофазных систем 49
Трехфазная система 51
Трехфазный трансформатор 55
Первая трехфазная линия электропередачи 55
Возникновение районных электростанций и энергетических систем 58
Основные этапы развития электрических сетей 59
Первый шаг в этом
принципиально новом
Его электродвигатель состоял из якоря кольцеобразной формы, вращающегося в магнитном поле электромагнитов. Якорь, имеющий форму стального кольца с зубцами (зубцы уменьшали магнитное сопротивление и облегчали крепление обмотки), вращался на вертикальном валу. На кольце между зубцами якоря наматывались катушки, концы которых подводились к пластинам коллектора, расположенного на нижней части вала. Подвод тока к пластинам коллектора осуществлялся роликами. Обмотка электромагнитов, имеющих полюсные наконечники, включалась последовательно с обмоткой якоря (двигатель имел последовательное возбуждение).
Преимущества двигателя Пачинотти: практически постоянный вращающий момент, удобная схема возбуждения, коллектор практически современного типа, небольшие габариты. Основное значение работы Пачинотти – замена явнополюсного якоря неявнополюсным, что является важным шагом на пути создания современной машины постоянного тока.
Пачинотти пришел к выводу об обратимости созданной им электрической машины, но не знал принципа самовозбуждения, поэтому для обращения двигателя в генератор считал нужным заменить электромагниты постоянными магнитами.
Право первооткрывателя важнейшего принципа электрической машины – принципа обратимости – принадлежит Эмилию Ленцу. Этот принцип является следствием знаменитого закона Ленца, сформулированного в 1833 г. Ленц писал: «Каждый электромагнитный опыт может быть обращен таким образом, что он приведет к соответствующему магнитоэлектрическому опыту. Для этого нужно только сообщить проводнику гальванического тока каким – либо иным способом то движение, которое он совершает в случае электромагнитного опыта, и тогда в нем возникает ток направления, противоположного направлению тока в электромагнитном опыте».
Раздел 2. Основные этапы развития электротехники
Лекции 2.5-2.6
Основные этапы развития электромагнитных генераторов
Как видно из предыдущего, развитие двигателя опережало на начальных этапах развитие генератора. Это объяснялось тем, что применяемые источники электроэнергии (гальванические элементы) были громоздки и малоэффективны. Необходимо было создание более экономичного и мощного источника электроэнергии.
Несмотря на то, что
электрохимические источники
В развитии электрогенератора постоянного тока можно наметить четыре этапа.
Первый этап (1831-1851 гг.) характеризуется созданием генераторов с возбуждением от постоянных магнитов. Такие генераторы в то время получили название магнитоэлектрических машин. Открытие в 1831 г. явления электромагнитной индукции указало новый способ получения электрического тока, который нашел свое воплощение в первом униполярном (однополюсном) генераторе - диске Фарадея.
Первым многополюсным синхронным генератором, т. е. генератором переменного тока был т. н. «генератор Р.М.» (автором был неизвестный ученый, подписавшийся «Р.М.»). Фарадей доработал его конструкцию рядом усовершенствований, главным из которых было добавочное стальное кольцо (ярмо), замыкавшее магнитную цепь сердечников электромагнитов (на рис. приведен усовершенствованный генератор Р.М.: 1 – деревянный диск, укрепленный на оси 2, приводимый в движение рукояткой 3; 4 – подвижные постоянные магниты, 5 – железные сердечники катушек 7, 6 – стальное кольцо с добавочными обмотками, замыкающее магнитную цепь сердечников, 8 - подставка).
Но переменный ток в то время еще не мог найти потребителя, т. к. для всех практических применений требовался постоянный ток. Поэтому в последующем изобретатели направили свои усилия на построение генераторов, дающих постоянный ток, разрабатывая для этого разнообразные коммутационные устройства.
Впервые приспособление для выпрямления тока в попеременно - полюсной машине было применено в генераторе братьев Пикси (1832 г.). При вращении подковообразного постоянного магнита наводилась переменная э. д. с. в двух неподвижных катушках со стальными сердечниками. Магнит приводился во вращение посредством рукоятки. Концы последовательно соединенных катушек выводились к зажимам барабанного коммутатора.
Недостаток этой машины и ей подобных - приходилось вращать тяжелые постоянные магниты. Целесообразнее оказалось сделать их неподвижными, а вращать более легкие катушки. При этом проще получалось и коммутирующее устройство, вращающаяся часть которого была закреплена на валу вместе с якорем. Именно такая конструктивная форма впервые вошла в практику.
Первым генератором такого типа, получившим практическое применение, был магнитоэлектрический генератор Б.C. Якоби. Занимаясь методами электрического взрывания мин, Якоби в 1842 г. построил генератор. При вращении катушек с помощью зубчатой передачи (вручную) в поле постоянных магнитов в них наводилась переменная э. д. с. На валу имелось коммутирующее устройство в виде 2-х полуцилиндров - простейший двухпластинчатый коллектор. Генератор был принят на вооружение русской армией (для воспламенения минных зарядов).
Стремление повысить мощность магнитоэлектрических генераторов привело к увеличению числа постоянных магнитов. Это уже знакомый путь, аналогичный развитию двигателей.
Известный толчок к построению более мощных магнитоэлектрических генераторов дали дуговые лампы с регуляторами, получившие распространение на маяках. Для производства таких генераторов в Париже была организована электропромышленная компания «Альянс».
Устроен был генератор следующим образом: на чугунной станине в несколько рядов были укреплены подковообразные постоянные магниты, расположенные по окружности и радиально по отношению к валу. В промежутках между рядами магнитов устанавливались на валу диски с большим числом катушек-якорей. В изображенной на рисунке машине было 40 магнитов и 64 стержня (явнополюсных якоря). На налу генератора укреплен коллектор с 16 металлическими пластинами, изолированными друг от друга и от вала машины. В качестве коллекторных щеток служили специальные ролики. В машине впервые было предусмотрено устройство для смещения роликов в зависимости от нагрузки. Перемещение роликов происходило пол действием тяг, идущих от центробежного регулятора, который был связан с валом машины.
В генераторе «Альянс» можно было варьировать соединение обмоток катушек в результате чего менялась э. д. с. Вследствие чего генератор мог давать либо большой ток низкого напряжения и служить, например, для целей гальванопластики и электролиза, либо меньший ток более высокого напряжения (40-250 В) для питания дуговых ламп.
Генератор «Альянс» нагляднее, чем меньшие по размеру машины, показал недостатки, присущие вообще магнитоэлектрическим машинам. Материалы и технологии производства магнитов были несовершенными. Под действием реакции якоря, в результате естественного старения и возможных вибраций постоянные магниты быстро размагничивались, вследствие чего уменьшались э. д. с. и мощность. Во всех этих машинах применялись стержневые якоря с многослойной обмоткой. При работе, вследствие плохого отвода тепла, они быстро нагревались, что приводило к разрушению изоляции. Вес и габариты, несмотря на небольшую мощность, были весьма значительны, а поэтому крупные машины были сравнительно дорогие. Кроме того, они давали ток, резко пульсирующий по величине.
Исследования в области электромагнетизма показали, что при помощи электромагнита можно получить значительно большую величину индукции в магнитной цепи, нежели с помощью постоянных магнитов и, следовательно, увеличить ЭДС и мощность генераторов.
Так начался второй этап (1851-1867 гг.) развития электрических генераторов. Он характеризуется преобладанием генераторов с независимым возбуждением, т. е с возбуждением от независимого источника. Это способствовало значительному улучшению постоянства работы генераторов и уменьшению их массы.
Характерным примером генератора с электромагнитами, обмотки которых питались токами от независимого источника можно назвать генератор англичанина Г. Уайльда (1863 г.). Он имел П-образный электромагнит 1, для питания которого был приспособлен отдельный возбудитель – небольшой магнитоэлектрический генератор 2. Вместо обычно применявшегося стержневого якоря Уайльд использовал предложенный в 1856 г. немецким электротехником и предпринимателем Вернером Сименсом якорь с сердечником двутаврового сечения («двух – Т – образный» якорь), который являлся разновидностью явнополюсного якоря. Этот якорь имел форму вала с продольными выточками, в которые укладывалась обмотка. (на рис. справа – сердечник якоря). Генератор с подобным сердечником обладал меньшим магнитным рассеянием, чем со стержневым, но его якорь, как и стержневой, имел многослойную обмотку с плохим теплоотводом и сильно нагревался, чем ограничивал мощность установки.
Данный генератор подтолкнул ученых к созданию генераторов с самовозбуждением. Машину Уайльда можно было бы назвать генератором с самовозбуждением, если питать обмотки возбуждения генератора не от отдельного возбудителя, а током самой машины, соединив, например, последовательно обмотку возбуждения с обмоткой якоря. Но в то время не было четкого осмысления процессов самовозбуждения. Ученые не могли понять, как будет работать машина, если нет потока возбуждения и, следовательно, индуктированного тока в цепи якоря.
Началом третьего этапа в развитии генераторов постоянного тока условно можно считать 1867 г., когда почти одновременно в разных странах был установлен принцип самовозбуждения. 17 января 1867 г. В. Сименс представил в Берлинскую академию наук доклад, в котором изложил сущность принципа самовозбуждения. В докладе были такие слова: «Однако того небольшого количества магнетизма, которое остается даже в самом мягком железе, достаточно, чтобы при возобновлении вращения снова получить в замкнутой цепи непрерывное возрастание тока. Следовательно, достаточно один раз пропустить ток в цепь обмотки неподвижного магнита, чтобы сделать прибор способным давать ток при каждом возобновлении вращения».
В. Сименс назвал принцип
самовозбуждения динамоэлектрич
Вскоре обнаружилось, что Сименс не мог претендовать на первенство в открытии этого принципа. Почти одновременно с ним свои идеи с описанием принципа самовозбуждения представили ряд ученых, но не все они располагали финансовыми возможностями для изготовления самовозбуждающихся генератором и на их идеи не было обращено достаточного внимания. Иное положение было у Сименса, поэтому именно его концерн стал производителем «динамомашин» в производственных масштабах.
Существенным недостатком первых генераторов с самовозбуждением являлась весьма не совершенная конструкция якоря. Так, двух – Т – образный якорь Сименса: ограничивал мощность машин из – за быстрого нагрева, вызывал сильное искрение на коллекторе, давал резко пульсирующий ток, который вызывал резкую пульсацию магнитного потока и, следовательно, большие потери в стальных сердечниках. Поэтому, двух – Т – образный якорь ничем не отличался от стержневого, т. к. оба они были разновидностями неудачного явнополюсного исполнения якорей машин постоянного тока.
Важнейшим событием, являющимся основным содержанием четвертого этапа развития генераторов, положившим начало промышленной электротехнике, является объединение принципа самовозбуждения с конструкцией кольцевого якоря.
Первый патент на самовозбуждающийся
генератор с кольцевым якорем
был получен сотрудником «
Генератор Грамма был очень экономичным источником энергии: его сравнение, например, с машиной «Альянс» показывает, что он имел вес на 1 кВт в 6 раз меньший, чем генератор с постоянными магнитами. Он позволял получать значительную мощность при высоком к. п. д. и сравнительно малых габаритах и массе.
Благодаря своим преимуществам,
генератор Грамма быстро вытеснил другие
типы и получил широкое
Машина Грамма представляла собой машину постоянного тока современного типа, но она нуждалась в определенных усовершенствованиях, которые последовали в 70 - 80-х гг. XIX в.
Одно из наиболее существенных улучшений, состоявшее в замене кольцевого якоря барабанным, было осуществлено в 1873 г. немецким электротехником, главным инженером фирмы Сименса Фридрихом Гефнер-Альтеником. Он устранил основной недостаток кольцевого якоря - плохое использование меди обмотки, которое получалось из – за разделения витка на две части, одна из которых не участвовала в образовании э. д. с. Теперь обе части витка участвовали в создании э. д. с.