Проектування локальної комп’ютерної мережі Ethernet за допомогою стандарту 10Base-TX

Автор: Пользователь скрыл имя, 05 Декабря 2011 в 15:36, курсовая работа

Краткое описание

У побудові локальної комп’ютерної мережі застосовують різні види кабельних систем, мережні карти, повторювачі та хаби, мости та комутатори, шлюзи, а також пристрої модуляції/демодуляції інформаційного сигналу – модеми. Тому є і багато різних варіантів побудови локальної мережі. При побудові локальної мережі важливо правильно обрати мережну операційну систему та стандарт для побудови мережі, зважаючи на усі вимоги, фактори впливу, умови та вихідні дані для проектування мережі.

Оглавление

Вступ 4

Вихідні дані на проектування 5

Теоретична частина 6

Опис проекту мережі 29

Обрахунки працездатності мережі 35

Висновки 39

Список використаної літератури 39

Файлы: 1 файл

KM Kypc.doc

— 1.43 Мб (Скачать)

              Оскільки для кожного з'єднання  дається смуга 10 Mбіт/с, сумарна перепускна здатність комутатора в наведеному прикладі складає 20 Mбіт/с. Якщо дані передаються між великим числом пар портів, інтегральна смуга відповідно розширюється. Наприклад, 24 портовий комутатор Ethernet може забезпечувати інтегральну пропускну здатність до 120 Mбіт/с при одночасній організації 12 з'єднань зі смугою 10 Mбіт/с для кожного з них. Теоретично, інтегральна смуга комутатора росте пропорційно числу портів. Однак, в реальності швидкість пересилання пакетів, що вимірюється в Mбіт/с, менша ніж сумарна смуга пар портів за рахунок так званого внутрішнього блокування. Для комутаторів високого класу блокування  незначно знижує інтегральну перепускну смугу пристрою.

              Комутатор Ethernet 10Mбіт/с може забезпечити високу перепускну здатність за умови організації одночасних з'єднань між усіма парами портів. Однак,  реально трафік звичайно являє собою ситуацію "один до багатьох" (наприклад, безліч користувачів мережі звертається до ресурсів одного сервера). У таких випадках перепускна здатність комутатора в нашому прикладі не буде перевищувати 10 Mбіт/с і комутатор не забезпечить істотної переваги в порівнянні зі звичайним концентратором (повторювачем) з точки зору режиму, що розглядається.

              Рис 3.3.3. три вузли A, B і D передають дані вузлу C. Комутатор зберігає пакети від вузлів A і B у своїй пам'яті доти, доки не завершиться передача пакета з вузла D. Після завершення передачі цього пакета комутатор починає передавати пакети від вузлів А та В, які зберігаються в пам’яті.              

                                              Рис 3.3.3. Варіант блокування

     У даному випадку перепускна  здатність комутатора визначається смугою каналу C (у даному випадку 10 Mбіт/с). Описана в даному прикладі ситуація є іншим варіантом блокування.

                                       Маршрутизатори  (Routers)

             Маршрутизатор (router) дозволяє організовувати в мережі надлишкові зв'язки, які утворюють петлі. Це стає можливим тому, що маршрутизатор приймає рішення про передачу пакетів на підставі більш повної інформації про зв'язки у мережі, ніж міст чи комутатор. Маршрутизатор має у своєму розпорядженні базу топологічної інформації, яка містить дані про те, наприклад, між якими підмережами деякої мережі існують зв'язки і в якому стані (працездатному чи ні) вони знаходяться. Маючи таку інформацію, маршрутизатор може вибрати один з декількох можливих маршрутів доставки пакета адресату. У даному випадку під маршрутом розуміють  проходження пакетом послідовності з декількох маршрутизаторів. На відміну від моста/комутатора, який не володіє інформацією про те, як зв'язані сегменти мережі  за  межами його портів, маршрутизатор аналізує всі існуючі зв'язки підмереж, тому він може вибрати оптимальний за деяким критерієм маршрут при наявності декількох альтернативних маршрутів. Рішення про вибір того чи іншого маршруту приймається кожним маршрутизатором, через який проходить пакет.

                При побудові складної мережі можуть бути корисні всі типи комунікаційних пристроїв: і концентратори, і мости, і комутатори, і маршрутизатори (мережні адаптери виключені з цього списку тому, що вони необхідні завжди). Найчастіше окремий комунікаційний пристрій виконує тільки одну основну функцію, представляючи собою або повторювач, або міст, або комутатор, або маршрутизатор. Але це не завжди зручно, тому що в деяких випадках більш раціонально мати в одному корпусі багатофункціональний пристрій, який може об’єднати ці базові функції і тим самим дозволяє розроблювачу мережі використовувати його більш гнучко. 

3. 4.  Особливості мережної технології Ethernet

3.4.1 Етапи розвитку технології Ethernet

           Ethernet - це найпоширеніший на сьогоднішній день стандарт локальних мереж . Загальна кількість мереж, що працюють за протоколом Ethernet у теперішній час, оцінюється в 5 мільйонів, а кількість комп'ютерів з установленими мережними адаптерами Ethernet — у 50 мільйонів.

      Коли говорять про Ethernet то під цим, звичайно, розуміють будь-який із варіантів цієї технології. У більш вузькому розумінні Ethernet — це мережний стандарт, впроваджений на експериментальній мережі Ethernet Network, яку фірма Xerox розробила й реалізувала в 1975 році. Метод доступу було випробувано ще раніше. У другій половині 60-х років у радіомережі Гавайського університету Aloha використовувалися різні варіанти конкурентного доступу до загального передаючого середовища (CSMA/CD).B 1980 році фірми DЕС, Intel та Xerox спільно розробили й опублікували стандарт Ethernet версії II для мережі, побудованої на основі коаксіального кабелю, який став останньою версією фірмового стандарту Ethernet. Тому фірмову версію стандарту Ethernet називають стандартом Ethernet DIX або Ethernet II. 

    Дещо пізніше на його основі з’явився стандарт IEEE 802.3. За першими літерами назв цих фірм утворено скорочення DIX,  що фігурує в описі цієї технології. Слово Ether (ефір) в назві технології означає різноманіття можливих середовищ передачі. Перші версії – Ethernet v1.0 і Ethernet v2.0 застосовувались тільки для коаксіального кабелю, стандарт IEEE 802.3 розглядає і інші варіанти середовищ передачі – виту пару і оптоволокно . У стандарті IEEE 802.3 розрізняють рівні MAC і LLC , в оригінальному Ethernet обидва ці рівні об'єднані в єдиний канальний рівень.

     У Ethernet DIX визначається протокол тестування конфігурації (Ethernet Configuration Test Protocol), що відсутній у IEEE 802.3. Трохи відрізняється і формат кадру, хоча мінімальні і максимальні розміри кадрів у цих стандартах збігаються. Часто для того, щоб відрізнити Ethernet, визначений стандартом IEEE, і фірмовий Ethernet DIX, перший називають технологією 802.3, а за фірмовим залишають назву Ethernet без додаткових позначень.

  У залежності від типу фізичного середовища стандарт IEEE 802.3 має

різні модифікації - 10Base-5, 10Base-2, 10Base-T, 10Base-FL, 10Base-FB.

         Технологія Fast Ethernet є еволюційним  розвитком класичної технології Ethernet. 10-мегабітний Ethernet влаштовував більшість користувачів протягом близько 15 років. Проте на початку 90-х років почала відчуватися його недостатня перепускна здатність. Якщо для комп'ютерів на процесорах Intel 80286 чи 80386 із шинами ISA (швидкість обміну 8 Мбайт/с) чи EISA (32 Мбайт/с) перепускна здатність сегмента Ethernet складала 1/8 чи 1/32 каналу "пам'ять - диск", то це добре узгоджувалося із співвідношенням обсягів обміну локальними  і зовнішніми даними для комп'ютера. В теперішній час в потужних клієнтських станціях із процесорами Pentium ( або аналогами інших фірм) і шиною PCI (133 Мбайт/с) ця частка впала до 1/133, що явно недостатньо. Тому багато сегментів 10-Мегабітного Ethernet стали працювати з перевантаженням, швидкість реакції серверів на них значно впала, а частота виникнення колізій істотно зросла, ще більше знижуючи номінальну перепускну здатність.

          У 1992 році група виробників  мережного устаткування, включаючи  таких лідерів технології Ethernet як SynOptics, 3Com та ряд інших, утворили некомерційне об'єднання Fast Ethernet Alliance для розробки стандарту нової технології, яка узагальнила б досягнення окремих компаній в області Ethernet-спадкоємного високошвидкісного стандарту. Нова технологія отримала назву Fast Ethernet.

           Одночасно почалися роботи в  інституті IEEE зі стандартизації нової технології - там була сформована дослідницька група з вивчення технічного потенціалу високошвидкісних технологій. За період з кінця 1992 року і по кінець 1993 року група IEEE розглянула 100-Мегабітні рішення, запропоновані різними виробниками. Поряд із пропозиціями Fast Ethernet Alliance ця група розглянула також і іншу високошвидкісну технологію, запропоновану компаніями Hewlett-Packard і AT&T.

           У центрі дискусій була проблема  збереження конкурентного методу  доступу (CSMA/CD). Пропозиція по Fast Ethernet зберігала цей метод і тим самим забезпечувала спадковість і погодженість мереж 10Base-T і 100Base-T. Коаліція HP і AT&T, що мала підтримку набагато меншого числа виробників у мережній індустрії, ніж Fast Ethernet Alliance, запропонувала зовсім новий метод доступу, названий Demand Priority. Він істотно змінював картину поведінки вузлів у мережі, тому не зміг вписатися в технологію Ethernet і стандарт 802.3, і для його стандартизації був організований новий комітет IEEE 802.12.

            У травні 1995 року комітет IEEE прийняв специфікацію Fast Ethernet як стандарт 802.3u, який не є самостійним стандартом, а є доповненням до існуючого стандарту 802.3.

   Відмінності Fast Ethernet від Ethernet зосереджені на фізичному рівні.     Більш складна структура фізичного рівня технології Fast Ethernet викликана тим, що в ній можуть використовуватись три варіанти кабельних систем : оптоволокно, 2-х парна скручена пари категорії 5 і 4-х парна скручена пара категорії 3, причому в порівнянні з варіантами фізичної реалізації Ethernet (а їх нараховується шість), тут відмінності кожного варіанта від інших глибша - міняється і кількість провідників, і методи кодування.  А тому, що фізичні варіанти Fast Ethernet створювалися одночасно, а не еволюційно, як для мереж Ethernet, то існувала можливість детально визначити ті підрівні фізичного рівня, які не змінюються від варіанта до варіанта, а також підрівні, специфічні для кожного варіанту .

            Основними перевагами технології  Fast Ethernet є: - збільшення перепускної здатності сегментів мережі до 100 Мбіт/c; - збереження методу         конкурентного (випадкового ) доступу Ethernet; - збереження зіркоподібної топології мереж і підтримка традиційних середовищ передачі даних   (скрученої пари й оптоволоконного кабеля).

             Зазначені властивості дозволяють здійснювати поступовий перехід від мереж 10Base-TХ (802.3u) (найбільш популярного на сьогоднішній день варіанту Ethernet) до швидкісних мереж, які зберігають  спадковість з добре знайомою технологією: Fast Ethernet не вимагає суттєвого перенавчання персоналу і заміни устаткування у всіх вузлах мережі, а також кабельної системи.

                       3.4.2. Формати кадрів технології  Ethernet

Формати кадрів технології Fast Ethernet не відрізняються від форматів кадрів технологій 10-мегабітного Ethernet. На Рис.3.4.2.1. приведений формат MAC-кадру Ethernet, а також часові параметри його передачі по мережі для швидкості 10 Мбіт/сек і для швидкості 100 Мбіт/сек. У кадрах стандарту Ethernet-II (чи Ethernet DIX), опублікованого компаніями Xerox, Intel і Digital ще до появи стандарту IEEE 802.3, замість двобайтового поля L (довжина поля даних) використовується двобайтовое поле T (тип кадру). Значення поля типу кадру завжди більше 1518 байт, що дозволяє легко розрізнити ці два різних формати кадрів Ethernet DIX і IEEE 802.3. Усі часові параметри передачі кадрів Fast Ethernet у 10 разів менше відповідних параметрів технології 10-Мегабітного Ethernet : міжбітовий інтервал складає 10 нс замість 100 нс, а міжкадровий інтервал - 0.96 мкс замість 9.6 мкс відповідно.

Рис.3.4.2.1.   Формат MAC-кадру та час його передачі

3.4.3  Правила побудови мереж Ethernet стандарту 10 Base

         Історично склалося так, що  основна маса мереж Ethernet створювалась за технологіями 10Base-2 та 10Base-T. На сьогоднішній день основними є мережі, побудовані на базі  "скрученої пари". Тому надалі більш докладно розглядаємо правила побудови мереж стандарту 10Base-T, а також особливості та обмеження які накладаються при застосуванні  інших стандартів (10Base-5, 10Base-2, 10Base-F, 100Base-TX, 100Base-T4  ).

         Дамо декілька термінів та  визначень: 

         Стандарт IEEE 802.3 (стандарт Ethernet) визначає локальну обчислювальну мережу як область або домен колізій.

          Колізія - руйнування пакета даних в каналі під час передачі. Коли вузол посилає пакет, він одночасно перевіряє, чи не відбулася під час передачі колізія. Якщо  колізія є, то вузли, які попали в неї, припиняють передачу, витримують паузу на протязі випадкового проміжку часу і повторюють передачу. Відсутність виявлення колізії показує  вузлу, що передача пакета відбулася успішно.

          Час, по закінченні  якого пакет  гарантовано проходить по каналам  зв’язку від джерела до приймача , називається  "максимальним періодом  колового обертання повідомлення" (maximum round-trip time). Цей час визначає найгіршу ситуацію, за якої пакет пройде від вузла-відправника на одному кінці мережі до місця виникнення колізії на іншому кінці мережі і при цьому сигнал про колізію гарантовано дійде до вузла - відправника.

Правила проектування мереж  стандарту 10Base-T

        Технологія Ethernet 10Base-T була стандартизована тільки в 1990 році (стандарт IEEE 802.3). Стандарт 10Base-T передбачає побудову ЛОМ шляхом використання кабельних сегментів для створення каналів зв’язку point-to-point. Тому основною топологією стає вже не "шина", як в 10Base-5 та 10Base-2, а "зірка". Геометричні розміри мереж, побудованих за стандартом 10Base-T, також залежать від послаблення сигналу в передаючому середовищі та від часу розповсюдження сигналу. Тобто, визначив інший тип кабелю, з’єднувачі та іншу топологію мережі, 10Base-T залишається тим самим Ethernet в логічному розумінні, що і 10Base-5. В цьому розумінні концентратор ( Hub ) це просто сегмент коаксіального кабелю із стандарту 10Base-5 або 10Base-2. Правила застосування цього стандарту такі:

  1. Мережа стандарту 10Base-Т може вміщувати максимум чотири концентратори.
  2. Комп’ютери підключаються до концентраторів кабелями UTP (STP) категорій 3, 4 або 5.
  3. Підключення до концентраторів виконується коннекторами  ( роз’ємами ) RJ-45 і кабелями  "прямого     з’єднання".
  4. З’єднання концентраторів між собою виконується кабелями  "перехресного з’єднання"  або,   при   використанні Up-Link-портів ,  кабелями “прямого з’єднання”.
  5. Максимальна довжина UTP- сегмента - 100 м.
  6. Максимальна кількість комп’ютерів, підключених до всіх концентраторів ЛОМ - 1024.
  7. Мінімальна довжина кабельного сегмента - 2.5 м.
  8. Максимальна  загальна довжина мережі - 500 м.

Информация о работе Проектування локальної комп’ютерної мережі Ethernet за допомогою стандарту 10Base-TX