Методы защиты от ошибок в компьютерных сетях

Автор: Пользователь скрыл имя, 10 Июня 2015 в 18:30, практическая работа

Краткое описание

Устройство защиты от ошибок на основе системы с обратной связью (ОС) характеризуется многими параметрами. Задача ее проектирования всегда является оптимизационной задачей, т.е. при заданных ограничениях на ряд параметров требуется найти наилучший вариант по какому-то критерию. В качестве критерия оптимизации выбирается одна из характеристик системы передачи данных: верность, скорость передачи, задержка передачи или сложность устройства.
В настоящем курсовом проекте рассматривается вариант оптимизации СЗО по критерию сложности. При этом принимается во внимание сложность алгоритма работы системы с ОС, алгоритма кодирования и декодирования и объем накопителей на передаче и приеме. Таким образом, при курсовом проектировании ставятся и решаются локальные задачи расчета СЗО, однако они позволяют отобразить ряд важных, ключевых особенностей реальных проектов и теоретических положений курса.

Файлы: 1 файл

КП.docx

— 84.05 Кб (Скачать)

МОСКОВСКИЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ СВЯЗИ И ИНФОРМАТИКИ

Кафедра Мультимедийных Сетей и Услуг Связи

 

ПРАКТИЧЕСКОЕ ЗАДАНИЕ К ЗАЧЕТУ

по дисциплине «Методы защиты от ошибок в компьютерных сетях»

ПРОЕКТИРОВАНИЕ СИСТЕМЫ ЗАЩИТЫ ОТ ОШИБОК КАНАЛЬНОГО УРОВНЯ

 

 

 

 

 

 

 

 

 

 

ИНДИВИДУАЛЬНОЕ ЗАДАНИЕ К ЗАЧЕТУ

Вариант №36

Характеристика СЗО:

L= 55 разрядов

М= 7.5 сообщение/с

Рош.доп=10-6

Рвып.доп=10-6

Рвст.доп=5*10-3

Рст.доп=10-6

Τз.доп=2.5 с

Характеристики прямого канала:

В= 600 Бод

а= 0.75

Ре= 10-3

tp= 30мс

Характеристики обратного канала:

B'= 100 Бод

a'=0.5

P'e=0.8*10-3

t'p=50мс


 

  1. Постановка задачи проектирования УЗО. 

Устройство защиты от ошибок на основе системы с обратной связью (ОС) характеризуется многими параметрами. Задача ее проектирования всегда является оптимизационной задачей, т.е. при заданных ограничениях на ряд параметров требуется найти наилучший вариант по какому-то критерию. В качестве критерия оптимизации выбирается одна из характеристик системы передачи данных: верность, скорость передачи, задержка передачи или сложность устройства.

В настоящем курсовом проекте рассматривается вариант оптимизации СЗО по критерию сложности. При этом принимается во внимание сложность алгоритма работы системы с ОС, алгоритма кодирования и декодирования и объем накопителей на передаче и приеме. Таким образом, при курсовом проектировании ставятся и решаются локальные задачи расчета СЗО, однако они позволяют отобразить ряд важных, ключевых особенностей реальных проектов и теоретических положений курса.

Требуется построить УЗО на основе системы с РОС, обеспечивающую передачу информации в системе передачи данных по заданному дискретному каналу (ДК) с заданным качеством при минимальной сложности устройства. Качество определяется следующими параметрами:

  • скоростью передачи;
  • вероятностью ошибки при получении сообщения источника не более Pош.доп;
  • вероятностью выпадения сообщения не более Рвып.доп;
  • вероятностью вставки сообщения не более Рвст.доп;
  • вероятностью стирания сообщения не более Рст.доп ;
  • задержкой сообщения не более tз.доп .

 

 

 

Расчет проектируемой системы.

уВыбор корректирующего кода для обеспечения вероятности ошибки в сообщении не более допустимой.

Вероятность выдачи сообщения получателю с ошибкой Рош определяется в основном вероятностью не обнаружения ошибки Р кодом, принятым в системе. Корректирующие свойства кода зависят от его длины n и избыточности Wk . С увеличением длины кода необходимая избыточность для достижения тех же корректирующих свойств уменьшается.

Код, который может быть применен в проектируемой системе, должен обеспечивать вероятность не обнаруживаемой ошибки Рн.о меньше допустимой, при этом избыточность его не должна быть больше допустимой избыточности. Допустимая избыточность может быть определена из соотношения:

Wдоп = (B-Bист) / B = (B-M*L)/B = 0,313

 

Вист - скорости выдачи информации источником

В - допустимой скорости работы в ДК

Теперь необходимо найти минимальную длину кода, который бы при избыточности Wk < Wдоп обеспечивал вероятность не обнаруживаемой ошибки Рн.о не больше допустимой Рош.доп. Для этого построим зависимость Wн = f(n), где    

(Wn - необходимая избыточность, n - число символов в коде)

       Рис.1 Зависимость  необходимой избыточности от  длины кода.

 

Как видно на рисунке nmin = 36. Из таблицы, приведенной в приложении, находим подходящий циклический код (73,55), d=5. У этого кода n = 73, а k = 55, и длина информационной последовательности k кратна длине сообщения источника L=55.

Для этого кода избыточность равна:

Wk= (n-k)/n = 0,247

Избыточность кода должна лежать в пределах:

Wн£ Wk £ Wдоп;

0,247  ≤  0,313

следовательно, соотношение выполняется.

Скорость кода:

Rk = 1- Wk

Rk =1-0,247=0,753

Найдем образующий полином выбранного кода g(x) и кодовое расстояние d. Из таблицы циклических кодов, приведенной в приложении, данный код находится на второй строчке, поэтому необходимо перемножить 2 значения,

f1(x)=12318=0010100110012,

f2(x)=10278=0010000101112.

g(x) = f1 · f2 = (x9+x7+ x4+x3+1)*( x9+ x4+ x2+x+1) = x18+x16+x12+x10+x9+x6+x4+x3+x2+x+1

Уточняем вероятность не обнаруживаемой ошибки Рн.о, которая может быть рассчитана из соотношения:

Рн.о =Pn(³ d) / 2n-k  

где Pn(³d) - вероятность возникновения комбинации ошибок весом (кратности) t³d на длине передаваемой двоичной последовательности n (в нашем случае это одно или несколько сообщений источника, закодированные выбранным помехозащитным кодом.)

Значение Pn(³ d) найдем по заданному распределению распределению Pn(³ t)



 


 

 

 

 




 

Рн.о = 7,255*10-9 , Рош.доп.=10-6;

 Рн.о £ Рош.доп.

Вероятность Ро.о обнаруживаемой (n, k)-кодом ошибки равна разности между вероятностью Pn(³ 1) возникновения любой ошибки на длине последовательности в n символов и вероятностью не обнаруживаемой кодом ошибки Рн.о :

Ро.о = q = Pn (³ 1) - Рн.о

Так  как на практике Рн.о << Pn(³ 1) , можно принять q = Pn (³ 1);

 Ро.о = Pn(³ 1) = n1- a pe

Ро.о = 2,923*10-3

Рн.о = 7,255*10-9

Вероятность правильного приема Q равна

Q = 1- q .

Q = 10,003 = 0.997

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Выбор алгоритма работы проектируемой системы.

В системах с Wдоп<0,7 используется алгоритм с непрерывной передачей сообщений. При достаточно высокой допустимой вероятности вставок (Pвст. доп > 10-4) использовать нумерацию сообщений не нужно.

Функциональная схема системы РОСнп бл приведена на рис. 2.

Рис. 2 Функциональная схема системы РОСнп бл

 

В системах РОСнп бл передатчик передает непрерывную последовательность кодовых слов, не ожидая получения сигналов "подтверждение". За время от начала передачи данного кодового слова до получения сигнала решения по этому слову может быть передано h кодовых слов. После обнаружения ошибки приемник (Декодер) стирает слово с ошибкой и блокируется (стирает без анализа) на прием следующих (h-1) слов. Передатчик по сигналу «запрос» повторяет слово, в котором была обнаружена ошибка, и (h-1) следующих за ним. Таким образом, передатчик повторяет все сообщения в текущем окне.

Временная диаграмма приведена в приложении.

В зависимости от заданного значения допустимой вероятности выпадения Рвып доп выбираем параметр m и алгоритм работы приемника сигналов обратной связи:

для Рвып доп = 10-6 m = 8, мажоритарный режим работы приемника.

Рассчитаем избыточность для системы РОСнп бл. Для этого рассчитаем среднюю относительную скорость передачи Rн.п.бл:

,

где k- число информационных элементов в кодовом слове;

n - длина кодового слова;

t0 = 1/В - скорость передачи в прямом ДК, Бод;

Для расчета средней относительной скорости передачи используются следующие формулы:

h³ 1 +] tож  /(nt0)[

tож = tp + tp' +tc + ta.k. + ta.c ;

 

tp и tp' - время распространения сигналов в прямом и обратном каналах соответственно;

tс - длительность сигналов обратной связи;

ta.k - время анализа кодового слова;

tа.с - время анализа сигналов обратной связи

В реальных системах tak » tac << tp.

Поэтому, можно принять ta.k = ta.c = 0

 

tc= m*t0;

           m== = 12

tc=12*1/600=0,02

tож= tp + tp' + tc

tож=0,03+0,05+0,02=0,1

h≥1+][

h≥2

Возьмем h=2

Rн.п.бл =

Wн.п.бл = 1 – Rн.п.бл

Wн.п.бл = 1 - 0.7 =0.3

Wн.п.бл. < Wдоп , значит система удовлетворяет требования по скорости передачи.

 

 

 

Расчет вероятностей выпадения и вставок

В случае, когда ПРМ СОС воспринимает в качестве сигнала подтверждения только m нулевых бит (немажоритарный прием), вероятность р0 определяется по формуле , а вероятность р? определяется по формуле .

Выбор алгоритма работы ПРМ СОС возлагается на проектировщика. Критерием правильного выбора значения m является выполнение условия PВЫП ≤ PВЫП.ДОП

Выберем m:

m ≤

m≤12, возьмем m=12

            p0 = q = 2,923*10-3; p? = 6.089*10-5

Рвып= h*p?*θ

Рвст=Q2*p0

Pвып = 2*6.089*10-5*2,923*10-3=3,56*10-7

Pвст = 0.9972*2,923*10-3=2,9*10-3

Из полученных результатов видим, что Рвып < Рвып.доп. Значит m выбрали правильно.

Определяется допустимое число j передач одного и того же кодового слова, исходя из требований на вероятность стирания.

Определим допустимое число передач одного и того же кодового слова

 

j = ] lgPст доп / lg q [

j=]lg(10-6)/lg(2,923*10-3)[=3

Максимальное время задержки сообщения в системе РОС с ограниченным числом передач зависит от числа допустимых передач j и равно:

 

tз max = nt0 + tp + ( j-1)(nt0 + tож), с

tз max = 73*0,0016+0,03+2*(73*0,0016+0,1) = 0,58 с

tз max < tз доп ,(0,58 < 2.5), значит соотношение выполняется.

 


Информация о работе Методы защиты от ошибок в компьютерных сетях