Автор: Пользователь скрыл имя, 14 Апреля 2012 в 12:30, курсовая работа
Full Rate или FR или GSM-FR — первый цифровой стандарт кодирования речи, использованный в телефонах GSM. Битрейт кодека — 13 кбит/с. Качество звука — очень низкое по сравнению с современными стандартами, но в начале 1990-х, когда он разрабатывался, FR-кодек был хорошим компромиссом между сложностью реализации и качеством звука. Но, несмотря на наличие более современных кодеков, FR всё ещё широко применяется во всем мире. На смену FR пришли стандарты Enhanced Full Rate (EFR) и Adaptive Multi Rate (AMR), которые сочетали в себе лучшее качество звука и более низкий битрейт
Теоретически
время задержки речевого сигнала
в кодекс равно длительности сегмента
и составляет 20 мс. Реальное время
задержки, с учетом операций канального
кодирования и перемежения, а также физического
выполнения рассматриваемых операций,
составляет 70-80 мс.
1.7.3 Детектор активности речи
Детектор активности речи (VAD) играет решающую роль в снижении потребления энергии от аккумуляторной батареи в портативных абонентских терминалах. Он также снижает интерференционные помехи за счет переключения свободных каналов в пассивный режим. Реализация VAD зависит от типа применяемого речевого кодека. Главная задача при проектировании VAD - обеспечить надежное отличие между условиями активного и пассивного каналов. Если канал на мгновение свободен, его можно заблокировать, поскольку средняя активность речи говорящего ниже 50%, то это может привести к существенной экономии энергии аккумуляторной батареи. К устройствам VAD предъявляются следующие основные требования:
-
минимизация вероятности
-
высокая вероятность
-
высокое быстродействие
-
минимальное время задержки
VAD
с обработкой в спектральной области удачно
сочетается с речевым RPE/LTP-LPC кодеком, так
как в процессе LPC анализа уже определяется
огибающая спектра входного воздействия,
необходимая для работы вторичного VAD.
1.7.4 Формирование комфортного шума
Формирование комфортного шума осуществляется в паузах активной речи и управляется речевым декодером. Когда детектор активности речи (VAD) в передатчике обнаружит, что говорящий прекращает разговор, передатчик остается еще включенным в течение следующих пяти речевых кадров. Во время первых четырех из них характеристики фонового шума оцениваются путем усреднения коэффициента усиления и коэффициентов фильтра LPC анализа. Эти усредненные значения передаются в следующем пятом кадре, в котором содержат информацию о комфортном шуме (SID кадр) [3].
В речевом декодере комфортный шум генерируется на основе LPC анализа SID кадра. Чтобы исключить раздражающее влияние модуляции шума, комфортный шум должен соответствовать по амплитуде и спектру реальному фоновому шуму в месте передачи. В условиях подвижной связи фоновый шум может постоянно изменяться. Это значит, что характеристики шума должны передаваться с передающей стороны на приемную сторону не только в конце каждого речевого всплеска, но и в речевых паузах так, чтобы между комфортным и реальным шумом не было бы резких рассогласований в следующих речевых кадрах. По этой причине SID кадры посылаются каждые 480 мс в течение речевых пауз.
Динамическое
изменение характеристик
1.7.5 Экстраполяция потерянного речевого кадра
В условиях замираний сигналов в подвижной связи речевые фрагменты могут подвергаться значительным искажениям. При этом для исключения раздражающего эффекта при воспроизведении необходимо осуществлять экстраполяцию речевого кадра.
Было установлено, что потеря одного речевого кадра может быть значительно компенсирована путем повторения предыдущего фрагмента. При значительных по продолжительности перерывах в связи предыдущий фрагмент больше не повторяется, и сигнал на выходе речевого декодера постепенно заглушается, чтобы указать пользователю на разрушение канала.
То же самое происходит и с SID кадром. Если SID кадр потерян во время речевой паузы, то формируется комфортный шум с параметрами предыдущего SID кадра. Если потерян еще один SID кадр, то комфортный шум постепенно заглушается.
Применение экстраполяции речи при цифровой передаче, формирование плавных акустических переходов при замираниях сигнала в каналах в совокупности с полным DTX процессом значительно улучшает потребительские качества связи с GSM PLMN по сравнению с существующими аналоговыми сотовыми системами связи [3].
СПИСОК
ИСПОЛЬЗОВАНЫХ ИСТОЧНИКОВ
1. Ю.А. Громаков. Структура TDMA кадров и формирование сигналов в стандарте GSM. "Электросвязь". N 10. 1993. с. 9-12.
2. http://ru.wikipedia.org/wiki/
3. Ю.А. Громаков. Сотовые системы подвижной радиосвязи. Технологии электронныхкоммуникаций. Том 48. "Эко-Трендз". Москва. 1994.