Контрольная работа по "Страхованию"

Автор: Пользователь скрыл имя, 22 Марта 2012 в 11:23, контрольная работа

Краткое описание

Используя приведенные данные таблицы смертности населения, определим:
1. Единовременную ставку на дожитие. Рассчитывается по формуле:
,
где Lx+n – число застрахованных лиц, доживающих до окончания срока страхования;
Vn – дисконтирующий множитель;
Lx – число лиц, доживающих до возраста x лет;

Файлы: 1 файл

к.р по страхованию задачи.doc

— 93.50 Кб (Скачать)


1.1      Задача 1

Используя приведенные данные таблицы смертности населения, определим:

1.           Единовременную ставку на дожитие. Рассчитывается по формуле:

,

где Lx+n – число застрахованных лиц, доживающих до окончания срока страхования;

Vn – дисконтирующий множитель;

Lx – число лиц, доживающих до возраста x лет;

1.1      Определим дисконтированы множитель, по формуле:

,

где i – норма доходности, принятая для расчета тарифа;

n – срок страхования, на который заключен договор.

Подставим данные в формулу, получим:

Единовременную ставку на дожитие:

2.           Единовременную нетто-ставку на случай смерти. Для расчета используем формулу:

2.1      Исходя из нормы доходности (i), определим дисконтирующий множитель (V) за каждый расчетный год:

Подставим данные в формулу, получим единовременную нетто-ставку на случай смерти для 56 возраста.

3.           Единовременную нетто-ставку по смешенному страхованию жизни.

Tн=E+A

Tн=0,60+0,08=0,68

2.2 Задача 2

Для выполнения задания необходимо:

1.           Рассчитать уровень убыточности страхования автотранспорта за каждый год, используем формулу:

,

где W – сумма выплаченного страхового возмещения;

S – страховая сумма застрахованных объектов.

Подставим исходные данные в формулу, отсюда получим:

Рассчитаем средний уровень убыточности как основу нетто-ставки, по формуле:

Подставив данные в формулу получим:

2.           Оценить устойчивость динамического ряда, рассчитав коэффициент вариации уровня убыточности, по формуле:

,

где q – средний уровень убыточности;

δ – среднее квадратическое отклонение.

Подставим данные в формулу, получим:

Динамический ряд является не устойчивым, так как коэффициент вариации больше 10%.

3.           Определить величину рисковой надбавки с помощью формулы среднего квадратического отклонения:

,

где n – число лет, за которое производится расчет.

Подставим данные в формулу и получим:

4.           Определить величину нетто-ставки  формуле:

Получим:

5.                Исходя из удельного веса нагрузки в брутто-ставке определить размер страхового тарифа.

 

 



Информация о работе Контрольная работа по "Страхованию"