Временной ряд

Автор: Пользователь скрыл имя, 19 Ноября 2012 в 15:41, реферат

Краткое описание

Временно́й ряд (или ряд динамики) — это собранный в разные моменты времени статистический материал о значении каких либо параметров (в простейшем случае одного) исследуемого процесса. Каждая единица статистического материала называется измерением или отсчётом, также допустимо называть его уровнем на указанный с ним момент времени. Во временном ряде каждому отчету должно быть указано время измерения или номер измерения по порядку. Временной ряд существенно отличается от простой выборки данных, так как при анализе учитывается взаимосвязь измерений со временем, а не только статистическое разнообразие и статистические характеристики выборки

Файлы: 1 файл

Временно́й ряд.doc

— 163.00 Кб (Скачать)

Временно́й ряд (или  ряд динамики) — это собранный в разные моменты времени статистический материал о значении каких либо параметров (в простейшем случае одного) исследуемого процесса. Каждая единица статистического материала называется измерением или отсчётом, также допустимо называть его уровнем на указанный с ним момент времени. Во временном ряде каждому отчету должно быть указано время измерения или номер измерения по порядку. Временной ряд существенно отличается от простой выборки данных, так как при анализе учитывается взаимосвязь измерений со временем, а не только статистическое разнообразие и статистические характеристики выборки[1].

Ана́лиз временны́х рядо́в — совокупность математико-статистических методов анализа, предназначенных для выявления структуры временных рядов и для их прогнозирования. Сюда относятся, в частности, методы регрессионного анализа. Выявление структуры временного ряда необходимо для того, чтобы построить математическую модель того явления, которое является источником анализируемого временного ряда. Прогноз будущих значений временного ряда используется для эффективного принятия решений.

Пример  временного ряда

Временные ряды состоят из двух элементов:

  • периода времени, за который или по состоянию на который приводятся числовые значения;
  • числовых значений того или иного показателя, называемых уровнями ряда.

Временные ряды классифицируются по следующим признакам:

  • по форме представления уровней:
    • ряды абсолютных показателей;
    • относительных показателей;
    • средних величин.
  • по количеству показателей, для который определяются уровни в каждый момент времени: одномерные и многомерные временные ряды;
  • по характеру временного параметра: моментные и интервальные временные ряды. В моментных временных рядах уровни характеризуют значения показателя по состоянию на определенные моменты времени. В интервальных рядах уровни характеризуют значение показателя за определенные периоды времени. Важная особенность интервальных временных рядов абсолютных величин заключается в возможности суммирования их уровней. Отдельные же уровни моментного ряда абсолютных величин содержат элементы повторного счета. Это делает бессмысленным суммирование уровней моментных рядов;
  • по расстоянию между датами и интервалами времени выделяют равноотстоящие – когда даты регистрации или окончания периодов следуют друг за другом с равными интервалами и неполные (неравноотстоящие) – когда принцип равных интервалов не соблюдается;
  • по наличию пропущенных значений: полные и неполные временные ряды;
  • временные ряды бывают детерминированными и случайными: первые получают на основе значений некоторой неслучайной функции (ряд последовательных данных о количестве дней в месяцах); вторые есть результат реализации некоторой случайной величины.
  • в зависимости от наличия основной тенденции выделяют стационарные ряды – в которых среднее значение и дисперсия постоянны и нестационарные – содержащие основную тенденцию развития.[1]

[править] Примеры временных рядов

Временные ряды, как правило, возникают  в результате измерения некоторого показателя. Это могут быть как  показатели (характеристики) технических систем, так и показатели природных, социальных, экономических и других систем (например, погодные данные). Типичным примером временного ряда можно назвать биржевой курс, при анализе которого пытаются определить основное направление развития (тенденцию или тренда).

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Заключение

Для временных  рядов главный интерес представляет описание или моделирование их структуры. Цель таких исследований, как правило, шире моделирования, хотя некоторую информацию можно получить и непосредственно из модели, делая выводы о выполнении тех или иных экономических законов (скажем, закона паритета покупательной способности) и проверяя различные гипотезы. Построенная модель может использоваться для экстраполяции или прогнозирования временного ряда, и тогда качество прогноза может служить полезным критерием при выборе среди нескольких моделей. Построение хороших моделей ряда необходимо и для других приложений, таких, как корректировка сезонных эффектов и сглаживание. Наконец, построенные модели могут использоваться для статистического моделирования длинных рядов наблюдений при исследовании больших систем, для которых временной ряд рассматривается как входная информация.

 

 

В статистике, обработке  сигналов и многих других областях под временным рядом понимаются последовательно измеренные через некоторые (зачастую равные) промежутки времени данные. Анализ временных рядов объединяет методы изучения временных рядов, как пытающиеся понять природу точек данных (откуда они взялись? что их породило?), так и пытающиеся построить прогноз. Прогнозирование временных рядов заключается в построении модели для предсказания будущих событий основываясь на известных событий прошлого, предсказания будущих данных до того как они будут измерены. Типичный пример — предсказание цены открытия биржи основываясь на предыдущей её деятельности.

Понятие анализ временных рядов используется для того, чтобы отделить эту задачу от в первую очередь от более простых задач анализа данных (когда нет естественного порядка поступления наблюдений) и, во-вторых, от анализа пространственных данных, в котором наблюдения зачастую связаны с географическим положением. Модель временного ряда в общем смысле отражает идею, что близкие во времени наблюдения будут теснее связаны, чем удалённые. Кроме того, модели временных рядов зачастую используют однонаправленный порядок по времени в том смысле, что значения в ряду выражаются в некотором виде через прошлые значения, а не через последующие (см. обратимость времени).

Методы анализа временных  рядов зачастую делят на два класса: анализ в частотной области и  анализ во временной области. Первый основывается на спектральном анализе и с недавних пор вейвлетном анализе, и может рассматриваться в качестве не использующих модели методов анализа, хорошо подходящих для исследований на этапе разведки. Методы анализа во временной области также имеют безмодельное подмножество, состоящее из кросс-корреляционного анализа и автокорреляционного анализа, но именно здесь появляются частично и полностью определённые модели временных рядов.

Содержание

[убрать]

  • 1 Анализ временных рядов
    • 1.1 Общее исследование
    • 1.2 Описание
    • 1.3 Прогнозирование и предсказание
  • 2 Модели временных рядов
    • 2.1 Обозначения
    • 2.2 Предположения
    • 2.3 Модели
  • 3 См. также
  • 4 Ссылки
  • 5 Литература

Анализ временных рядов

Существует  несколько методов анализа данных, применимых для временных рядов.

Общее исследование

  • Визуальное изучение графических представлений временных рядов
  • Автокорреляционный анализ для изучения зависимостей
  • Спектральный анализ для изучения циклического поведения, не связанного с сезонностью

Описание

  • Разделение компонент: тренд, сезонность, медленно и быстро меняющиеся компоненты, циклическая нерегулярность
  • Простейшие свойства частных распределений

Прогнозирование и предсказание

  • Полноценные статистические модели при стохастическом моделировании для создания альтернативных версий временных рядов, показывающих, что могло бы случиться на произвольных отрезках времени в будущем (предсказание)
  • Упрощённые или поноценные статистические модели для описания вероятные значения временного ряда в ближайшем будущем при известных последних значениях (прогноз)

Модели временных рядов


Как показано Боксом и Дженкинсом, модели временных рядов  могут иметь различные формы  и представлять различные стохастические процессы. При моделировании изменений  уровня процесса можно выделить три  широких класса имеющих практическую ценность: авторегрессионые модели, интегральные модели и модели скользящего среднего. Эти три класса линейно зависят от предшествующих данных. На их основе построены модели авторегрессионного скользящего среднего (Autoregressive Moving Average, ARMA) и авторегрессионного интегрированного скользящего среднего (Autoregressive Integrated Moving Average, ARIMA). Эти модели в свою очередь обобщает модель авторегрессионного дробноинтегрированного скользящего среднего (autoregressive fractionally integrated moving average, ARFIMA). Расширения моделей на случаи, когда данные представляются не скалярно, а векторно, называют моделями многомерных временных рядов. Для таких моделей в сокращённых названиях появляется буква «v» от слова «vector». Существуют расширения моделей на случай, когда исследуемый временной ряд является ведомым для некоторого «вынуждающего» ряда (который, однако, может не быть причиной возникновения исследуемого ряда). Отличие от многомерного ряда заключается в том, что вынуждающий ряд может быть детерминированным или управляться исследователем, проводящим эксперимент. Для таких моделей в сокращении появляется буква «x» от «exogenous» (экзогенный, вызываемый внешними причинами).

Нелинейная  зависимость уровня ряда от предыдущих точек интересна, отчасти из-за возможности  генерации хаотических временных  рядов. Но главным всё же является то, что опытные исследования указывают на превосходство прогнозов, полученных от нелинейных модлей, над прогнозами линейных моделей.

Среди прочих типов  нелинейных моделей временных рядов  можно выделить модели, описывающие  изменения диспресии ряда со временем (гетероскедатичность). Такиме модели называют моделями авторегрессионной условной гетероскедастичности (AutoRegressive Conditional Heteroscedasticity, ARCH). К инм относится большое количество моделей: GARCH, TARCH, EGARCH, FIGARCH, CGARCH и др. В этих моделях изменения дисперсии связывают с ближайшими предшествующими данными. Протевовесом такому подходу является представление локально изменчивой дисперсии, при котором дисперсия может быть смоделирована зависящей от отдельного менющегося со временем процесса, как в бистохастических моделях.

В последнее  время знчительное внимание снискали исследования в области безмодельного  анализа и методы, основанные на вейвлетных преобразованиях (например локально стационарные вейвлеты) в частности. Методы многомасштабного анализа разлагают заданный временной ряд на составные части, чтобы показать зависимость от времени с разным масштабом.

Обозначения

Существует  большое число вариантов обозначения  временных рядов. Одним из типичных является , обозначающее ряд с натуральными индексами. Другое стандартное представление:

Предположения

Существуют  две группы предположений, в условиях которых строится большинство теорий:

  • Стационарность процесса
  • Эргодичность

Идея стационарности трактуется в широком смысле, охватывая  две основных идеи: строгая стационарность и стационарность ворого порядка (стационарность в широком смысле). На основании  этих предложений могут быть построены  и модели, и приложения, хотя модели в дальнейшем могут рассматриваться как частично заданные.

Анализ временного ряда может проводиться и когда  ряд сезонно стацонарен или нестационарен.

Модели

Общий вид авторегрессивной модели задаётся следующим образом:

,

где — источник случайность, белый шум. Белый шум имеет следующие свойства:

В этих предположениях процесс определён вплоть до моментов второго порядка и, при определённых условиях на коэффициенты, может быть стационарным в широком смысле.

Если шумы имеют  нормальное распределение, их называют нормальным белым шумом. В этом случае авторегрессионный процесс может  быть строго стационрен, опять же, при выполенении некоторых условий на коэффициенты.

Ссылки


  • Wikipedia: Time series

Литература


  • Box, George; Jenkins, Gwilym Time series analysis: forecasting and control, rev. ed. // Oakland, California: Holden-Day. — 1976.

 

 

Анализ  временных рядов (time-series analysis)

А. в. р. наз. статистический анализ данных, собранных в ходе наблюдений за единичным объектом (напр., отдельным человеком, семьей или городом), производимых последовательно во времени, либо через определенные интервалы, либо непрерывно. Как и традиционные параметрические методы анализа данных, методы А. в. р. используются для описания связей между переменными, предсказания будущего поведения и проверки эффектов проведенного лечения. Есть два математически эквивалентных подхода к разработке концептуальных моделей и вычислительных процедур А. в. р. Один подход, наз. анализом во временной области или анализом временных характеристик (time-domain analysis), связан с использованием понятий, сходных с теми, что применяются в традиционном корреляционном и регрессионном анализе. Др. подход получил название анализа частотных характеристик (frequency-domain analysis); он предполагает изучение частотных составляющих и основан на понятиях спектрального анализа. Далее рассматривается ряд осн. идей, связанных с анализом временных характеристик.

Информация о работе Временной ряд