Автор: Пользователь скрыл имя, 06 Декабря 2010 в 20:34, лабораторная работа
Под юстировкой понимают определённую последовательность операций установки, ориентации и закрепления элементов оптических систем лазеров, в результате чего ось активного элемента выставляется перпендикулярно поверхности зеркал и совпадает с оптической осью резонатора. Такое взаимное расположение оптических элементов обеспечивает обратную оптическую связь с минимальными потерями для генерируемого излучения.
Отчёт
По лабораторной работе №1
«Юстировка оптических систем лазеров»
Выполнили ст. гр. 6862: Кожухина Е.Н.
Рогова Т.Е.
Сотникова Ю.С.
Фёдорова Н.А.
Проверил преподаватель:
Е.Н. Леонтьев
Санкт-Петербург
2010г.
Цель
работы: Изучение методов и освоение
техники юстировки оптических систем
лазеров.
Общие сведения: Под юстировкой понимают определённую последовательность операций установки, ориентации и закрепления элементов оптических систем лазеров, в результате чего ось активного элемента выставляется перпендикулярно поверхности зеркал и совпадает с оптической осью резонатора. Такое взаимное расположение оптических элементов обеспечивает обратную оптическую связь с минимальными потерями для генерируемого излучения.
Пространственные,
энергетические и
Настройка
сама по себе не может с
высокой точностью обеспечить
получение требуемых
Наиболее
распространёнными методами
Метод оптического рычага: Упрощённая схема юстировки методом оптического рычага
(юстировка оптической системы по бликам на экране с отверстием) представлена на рис.1, где введены следующие обозначения: 1 – вспомогательный гелий-неоновый лазер; 2 - экран с отверстием; 3, 5 – зеркала резонатора; 4 – активный элемент.
Излучение
вспомогательного лазера через
небольшое отверстие в экране
направляется в резонатор
Точность установки элементов оптической системы зависит от параметров излучения вспомогательного лазера и от расстояния между юстируемыми поверхностями.
Автоколлимационный метод: Автоколлимационный метод заключается в последовательном совмещении отражения изображения перекрестья автоколлимационной сетки с отражённым изображением перекрестья окуляра. Оптическая схема автоколлиматора представлена на рис.2, где приняты следующие обозначения: 1 – поверхность юстируемого элемента; 2 – объектив; 3 – электрическая лампочка; 4 – конденсор; 5 – автоколлимационная сетка; 6 – призма-куб, склеенная из двух прямоугольных призм; 7 – стеклянная пластина с нанесённым перекрестием окуляра; 8 – окуляр.
Как следует из рисунка, свет от лампочки 3 попадает на конденсор 4, обеспечивающий равномерное освещение сетки 5. Автоколлимационная сетка представляет собой двухкоординатную шкалу с делениями, выполняемую обычно в виде пересекающихся прозрачных линий в непрозрачном экране. Через прорези сетки лучи света проходят объектив 2 и освещают отражающую поверхность 1, отражаясь от которой они через призму 6 и пластину 7 направляются к окуляру 8. при совмещении фокальных областей объектива и окуляра с плоскостью перекрестия окуляра можно наблюдать отчётливое изображение сетки 5 и перекрестья окуляра 7. Если юстируемая поверхность перпендикулярна оптической оси объектива, то перекрестья сетки и окуляра совпадут. Высокая точность юстировки с помощью автоколлиматора обеспечивается тем, что совмещение направлений прямого и отражённого лучей визируется по совмещению тонких линий метки оси коллиматора и изображения шкалы, которые наблюдаются через окуляр с увеличением. При повороте юстируемого элемента на угол ά отражённые от его поверхности лучи отклоняются на угол 2ά.
Минимальная
погрешность измерения
С помощью
автоколлиматора юстировку
Первый метод заключается в том, что выходное зеркало снимается, а оптическая ось автоколлиматора выставляется перпендикулярно плоскости торца активного элемента. Затем снимается активный элемент и перпендикулярно оптической оси автоколлиматора ставится (помещается) непрозрачное зеркало резонатора. После этого устанавливается активный элемент и проверяется его ориентация. Если она не изменилась, то на выходное зеркало ставиться на место и юстируется. В процессе реализации рассматриваемого метода наблюдатель последовательно совмещает отражённые от трёх поверхностей изображения автоколлимационной сетки с перекрестием окуляра.
При юстировке по методу ”на просвет” все оптические элементы остаются на своих местах, что способствует повышению её оперативности. Излучение автоколлиматора , частично отражаясь, проходит выходное зеркало и активный элемент к непрозрачному зеркалу. Оптическая система считается съюстированной, если изображения автоколлимационной сетки, отражённые от зеркала и торца активного элемента, совпадают. Этим методом можно юстировать лазеры только с достаточно прозрачными и однородными активными элементами, например, неодимовый стеклянный лазер. При юстировке рубинового лазера изображение автоколлимационной сетки, отражённое от непрозрачного зеркала, из-за неоднородности рубина сильно размывается и совместить его с остальными изображениями достаточно сложно.
Интерференционный метод: Интерференционный метод юстировки, как и метод оптического рычага, основан на использовании вспомогательного лазера с малой угловой расходимостью излучения.
На рис.3 обозначены: 1- лазер; 2 – экран с отверстием; 3 – линза; 4 и 6 – зеркала резонатора; 5 – активный элемент. Но в отличие от рис.1 в схему юстировки между экраном 2 и резонатором вводится слаборассеивающая линза или между лазером 1 и экраном устанавливается собирающая линза, фокусирующая излучение лазера на отверстие в экране. Этим обеспечивается заполнение светом всей апертуры резонатора. Лазерные лучи, отражённые от плоских поверхностей оптических элементов, при наложении в съюстированной системе создают на экране интерференционную картину в виде концентрических колец, центрированных относительно отверстия в экране. В случае разъюстировки центр интерференционной картины смещается от центра отверстия на расстояние, пропорциональное углу между отражающими поверхностями. До начала юстировки интерференционным методом оптическая схема лазера юстируется по бликам на экране в отсутствие линзы.
Вывод: Самый точный - автоколлимационный метод, потом по точности идут: интерференционный метод и метод оптического рычага соответственно.