Автор: Пользователь скрыл имя, 15 Марта 2012 в 09:23, реферат
Провода окончательно поработили человечество. Современные города тонут в паутине кабелей — на земле, под землей и в воздухе тянутся бесконечные километры окутанных в резину медных змеек. Стоит выйти на улицу и поднять голову вверх — и вы увидите витиеватые проводные соединения между столбами линий электропередач, а мимо проедет трамвай с поднятым пантографом.
ВВЕДЕНИЕ 3
1.История развития беспроводного электричества 5
1.1Таинственный гений 5
1.2 Научные поиски 7
1.3 Вйна токов
2. Современные технологии передачи электричества 10
2.1 Сто лет спустя 10
2.2 Мир без проводов 12
2.3 Стандартизованные умы 14
2.4 Хронология событий 15
ЗАКЛЮЧЕНИЕ 17
СПИСОК ИСПОЛЬЗОВАННОЙ ЛИТЕРАТУРЫ 18
1.3 Война токов
Об этом редко пишут в учебниках истории, но на заре эры электричества произошла самая настоящая «война токов» с участием лучших умов своего времени и немалых финансовых вложений. Так называемый «король изобретателей» Томас Эдисон вступил в противостояние с Николой Теслой по поводу использования постоянного или переменного тока.
С самого начала своей деятельности Никола Тесла ратовал за использование переменного тока в генераторах и электродвигателях. Изобретатель обладал достаточными математическими знаниями и мог подтвердить все преимущества от использования переменного тока. Однако теоретик и экспериментатор Томас Эдисон к тому времени уже успел «захватить Америку» при помощи генераторов и ламп на основе постоянного тока — его технологии работали при малой нагрузке и в общем-то всех устраивали. Разумеется, американскому изобретателю не хотелось остаться в стороне и потерять свою славу — тем более что вызов ему бросил «какой-то сербский иммигрант». Эдисон сделал все возможное, чтобы опорочить имя Николы Теслы и унизить его изобретения: распространял информацию о частых фатальных экспериментах с переменным током, выступал с резкими заявлениями, публично убивал животных при помощи тока и даже тайно заплатил Гарольду Брауну за создание первого в истории электрического стула.
Судя по всему, Никола Тесла с его спокойным характером не обращал особого внимания на выходки Эдисона. Быть может, именно это привело к тому, что создатели огромной гидроэлектростанции Ниагара-Фоллс выбрали переменный ток Теслы в качестве единственного генерируемого и передаваемого типа энергии. Когда в ноябре 1896 года Ниагара-Фоллс успешно передала электричество от гидроэлектрических генераторов в индустриальный район Буффало, Томас Эдисон окончательно осознал свой провал. Однако два изобретателя так и остались кровными врагами до конца жизни — они отказались разделить на двоих Нобелевскую премию, предложенную им за совместный вклад в развитие электричества, а позднее Никола Тесла отказался и от медали Эдисона за вклад в науку.
2. СОВРЕМЕННЫЕ ТЕХНОЛОГИИ ПЕРЕДАЧИ ЭЛЕКТРИЧЕСТВА
2.1 Сто лет спустя
На заре эпохи электричества мир оказался не готов к продвинутым идеям Николы Теслы. Вполне естественно, что людей интересовали куда более приземленные вещи вроде радиосвязи и продвинутого уличного освещения — все это нужно было разработать и популяризовать в самый короткий срок. Да и в том, чтобы подвести лишний питающий провод к электроприборам, никто не видел ничего плохого — одним больше, одним меньше... С течением времени ошибочность подобных взглядов стала более явной: общество развивалось, электричество стало основой основ. Ну а сегодня мы так запутались в проводах, что самое время отказаться от парочки старых идеалов: беспроводная передача энергии значительно упростила бы нам жизнь, полностью избавив от проводов. Представьте только, что вмиг исчезнут все интерфейсные кабели, а ноутбуки обретут настоящую мобильность, научившись подзаряжаться от специальных точек в общественных местах. И это не фантастика!
Современные ученые знают целых три способа для беспроводной передачи энергии на разные расстояния. Первый из них использует направленные радиоволны — прием передаваемых волн и конвертацию в электричество в этом случае осуществляет так называемая ректенна (от английского «rectifying antenna»), специальная решетка, восприимчивая к микроволновому излучению. Ректенна в состоянии передать энергию на очень большие расстояния — например, с орбиты на поверхность Земли, — но для правильной работы технологии требуется очень большой приемник. В 1987 году ученые NASA проводили большой эксперимент, их орбитальный спутник диаметром в 1 км передавал микроволны на ректенну, находящуюся на земле, — так вот, диаметр этой ректенны превышал 10 км. Теоретически с помощью ректенн можно передавать и энергию, но ее создатель, Хидетсугу Яги, пока предпочитает работать с телекоммуникациями.
Второй способ «имени Теслы» заключается в использовании лазерного луча: энергия трансформируется в концентрированный пучок света и передается на приемник (солнечная ячейка) для перевода обратно в электричество. Метод подходит для питания удаленных объектов — на его основе в Китае даже был разработан проект обеспечения энергией космической станции на Луне. А три года назад NASA продемонстрировали беспилотный самолет с безлимитным временем полета — батареи устройства подзаряжал лазер, расположенный на земле. К сожалению, известные недостатки сводят пользу лазера на нет: несовершенство существующих технологий приводит к потерям большей части энергии, и, прежде чем сделать метод эффективным, ученым придется сначала придумать солнечную ячейку с высоким КПД. Еще один ощутимый недостаток лазера — опасность попадания какого-либо объекта в зону действия луча (в этом случае объекту придется очень несладко). Поэтому, увы, лазерная передача не подходит даже для зарядки домашней техники — конечно, если вы не желаете нанести фигурную татуировку в районе талии.
Наиболее пригодный метод для передачи энергии в домашних условиях и на предприятиях зовется страшными словами «индукционно-резонансное связывание» (resonant inductive coupling) — по сути, это просто более продвинутая форма простого индукционного связывания (inductive coupling). Для того чтобы ток потек без проводов, необходимы две катушки — одна для приема, вторая для передачи энергии. Катушки создают магнитное поле, и энергия переходит с одной на другую благодаря электромагнитной индукции. Дешево и сердито. Более того, если заставить катушки резонировать на одной и той же частоте, расстояние для беспроводной передачи можно будет увеличить до нескольких метров. И при этом направленное магнитное поле полностью безвредно для человека и животных — ведь оно даже меньше, чем магнитное поле Земли.
2.2 Мир без проводов
Беспроводная передача энергии уже получила применение в некоторых областях. Так, большинство электрических зубных щеток давно используют метод индукционного связывания по вполне понятным причинам — любые контакты с водой могут привести к короткому замыканию, а сгоревшая по вине зубной щетки квартира вряд ли добавит популярности производителям. Конструкция в меру проста, как и все гениальное: в нижней части щетки размещается одна магнитная катушка, в подставке — вторая. При установке щетки в подставку магнитные поля катушек начинают взаимодействовать и заряжать встроенные аккумуляторы.
Выставка CES 2009 в начале 2009 года пестрила решениями на основе индукционного связывания. Многочисленные производители решили упростить процесс подключения к зарядным устройствам — то есть мы постепенно все же переходим в беспроводную эпоху. Отличным примером новой концепции можно считать наработки компании Powermat, которая представила целую линейку устройств для беспроводной зарядки различной техники. Powermat предлагает всем желающим купить индукционный коврик и приемники для самых популярных устройств — док-станцию дляApple iPod, корпуса для смартфонов, заглушки для ноутбуков и цифровых камер. После подключения приемника остается положить заряжаемое устройство сверху коврика — и все, зарядка началась. Конечно, от подключения самих ковриков Powermat к розеткам питания избавиться не удастся, но по крайней мере количество проводов сократится втрое.
Еще одним открытием выставки CES 2009 стала технология eCoupled, созданная компанией Fulton Innovation. Уже в этом году на рынке появятся различные рабочие инструменты (дрели, отвертки и даже фонарики) с бесконтактными док-станциями. Все это, конечно, хорошо и здорово, но назвать индукционное связывание идеальной технологией для ближайшего будущего не получится. Да, пользователи самой разной мобильной техники избавятся от необходимости подключать провод к самим девайсам, смогут положить сразу все плееры и фотоаппараты на один-единственный коврик и начать зарядку, избавившись от охапки проводов, — но до рая на Земле все равно еще далеко. Хотелось бы заходить в квартиру, кидать телефон на диван, ставить сумку с камерой на пол и раскрывать ноутбук на столе, автоматически начиная зарядку — безо всяких там проводов и дополнительных устройств. Но, увы, пока нам остается лишь ждать пришествия более продвинутой технологии, способной увеличить радиус действия беспроводных зарядников.
Если верить команде из Массачусетского технологического университета (MIT), состоится это совсем скоро. Над исследованиями в области индукционно-резонансного связывания там работает группа ученых под управлением профессора физики Марина Солячича. Говорят, как-то раз господин Солячич проснулся ночью из-за того, что его сотовый телефон разрядился и начал подавать назойливые сигналы, и одолела его бессонница. Всю ночь Марин с раздражением думал о беспроводном зарядном устройстве, которое бы приступало к зарядке телефона, как только он бы заходил домой, — и на следующее же утро приступил к разработке такого устройства. На основе метода индукционно-резонансного связывания, разумеется.
«Проще всего объяснить этот метод так, — рассказывает господин Солячич. — Представьте себе ряд бокалов с вином, наполненных до разного уровня (таким образом, все они вибрируют на разной частоте). Если певец задает ноту, которая совпадает с частотой одного из бокалов, он поглощает звук и начинает вибрировать. Все остальные при этом остаются неподвижными. Точно так же и магнитное поле связывается и начинает передавать энергию лишь магнитному полю на такой же частоте».
Используя метод резонанса, команда Солячича собрала установку с двумя настроенными на одинаковую частоту катушками на расстоянии двух метров друг от друга. Одну из катушек подключили к источнику энергии, она начала передавать энергию на вторую и легко «подожгла» 60-ваттную лампу без использования проводов! Ученые уже предложили самую эффективную комбинацию в рамках используемого метода: две медные катушки диаметром 60 см и магнитное поле на частоте 10 МГц смогут обеспечить беспроводную передачу энергии на расстояние до 2 метров. Технологию назвали WiTricity (от двух английских слов — «Wireless» и «Electricity»). Что ж, остается только довести технологию до ума — в данный момент команда уже ищет пригодный материал для уменьшения диаметра катушек и повышения эффективности.
2.3 Стандартизованные умы
Великие мира сего понимают важность технологии и не хотят допустить перемешивания стандартов разных производителей (как это было во время зарождения компьютерной индустрии). В числе первых за стандарты беспроводной передачи энергии решило взяться Министерство внутренних дел и коммуникаций Японии. Свои варианты предложила компания Toshiba, которая уже ведет работы над разработкой, исследованиями и стандартизацией беспроводных стандартов питания для домашней техники. Инициативные группы надеются представить готовую технологию на рынке в период с 2015 года по 2020-й. Стандартизация будет разделена на три ступени: первая из них подразумевает разработку стандартов индукционного связывания — технология сможет заряжать объекты на расстоянии нескольких миллиметров при частоте нескольких сотен кГц, вторая стандартизирует разработанный в MIT метод индукционно-резонансного связывания для зарядки объектов, удаленных на несколько метров от источника. Третья же ступень стандартизирует приемники для высокоэффективного получения передаваемой энергии — и на основе этого стандарта производители самой разной техники смогут разрабатывать новые устройства.
2.4 Хронология событий
* 1820: Андре Мари Ампер описывает закон Ампера, показывающий, что электрический ток создает магнитное поле
* 1831: Майкл Фарадей описывает закон Фарадея, базовый закон электромагнетизма
* 1864: Джеймс Максвелл математически моделирует поведение электромагнитного излучения
* 1888: Генрих Герц подтверждает существование электромагнитной радиации, создает первый радиопередатчик
* 1893: Никола Тесла демонстрирует беспроводное питание лампочек на выставке World Columbian Exposition в Чикаго
* 1894: Хатин и Леблан выдвигают теорию о возможности индукционной передачи энергии, регистрируют патент на передачу энергии на частоте 3 кГц
* 1895: Джагдиш Чандра передал радиосигналы на расстояние 6 км
* 1897: Гильермо Маркони передал сигнал Морзе на расстояние 6 км
* 1901: Гильермо Маркони передает сигнал Морзе через Атлантический океан
* 1926: Шинтаро Уда и Хидетсугу Яги опубликовали первый материал об антенне Яги
* 1961: Вильям Браун публикует статью о возможности передачи энергии при помощи микроволн
* 1964: Вильям Браун демонстрирует вертолет на микроволновом питании, который получал всю необходимую энергию через микроволновый луч. С 1969 года по 1975-й Браун проработал техническим директором JPL Raython, где ему удалось переправить 30 кВт на расстояние 1 мили при 84-процентной эффективности передачи
* 1968: Питер Глэйсер обещает беспроводную передачу энергии из космоса при помощи лазера
* 1971: Профессор Дон Отто показывает небольшую тележку на беспроводном индукционном питании в Университете Окленда, Новая Зеландия
* 1988: Университет Окленда патентует технологию индукционной передачи энергии и производит первый беспроводной блок питания
* 1990: Профессор Джон Бойс разрабатывает технологию, которая позволяет нескольким транспортным средствам передвигаться от одного индукционного источника энергии
* 1996: Университет Окленда создает систему питания Electric Bus при помощи индукционной передачи энергии, реализует ее в Новой Зеландии
* 2004: Индукционная передача энергии, разработанная в Университете Окленда и запатентованная Auckland UniServices Ltd., используется в 90% индустрии чистых комнат (например, при создании полупроводников)
* 2005: Команда профессора Бойса создает трехфазный IPT Highway, система позволяет передавать питание двигающимся транспортным средствам в лаборатории
* 2007: Группа профессора Марина Солячича в Массачусетском технологическом институте (MIT) передает беспроводное питание 60-ваттной лампе при 40-процентной эффективности