Автор: Пользователь скрыл имя, 02 Апреля 2012 в 17:31, шпаргалка
1. Предмет и задачи эк. Историч развитие экологии.
Предмет экологии – совокупность связей между организмом и средой. Экология – наука изучающая взаимодействия организмов с окружающей средой и друг с другом. Сюда относятся и все условия существования, как неорганические условия – климат, неорганическая пища, состав воды, почвы и т.д., так и органические – общие отношения организмов ко всем остальным организмам.
1. Биосфера. происхождение биосферы. Структура и границы биосферы. Основные этапы эволюции биосферы. Ноосфера. Ноосферогенез. Биосфера – сложная наружная оболочка Земли, населенная организмами, составляющими в совокупности живое вещество планеты. Термин был введен в 1875г. Эдуардом Зюссом. В 1/3 20века возникло фундаментальное научное направление в естествознании – учение о биосфере, основоположником которого явл-ся В.Вернадский. Биосфера охватывает нижнюю часть атмосферы до высоты озонового экрана (20-25 км), верхнюю часть литосферы (кора выветривания) и всю гидросферу до глубинных слоев океана. В. И. Вернадский отмечал, что «пределы биосферы обусловлены, прежде всего, полем существования жизни». На развитие жизни, а, следовательно, и границы биосферы оказывают влияние многие факторы и прежде всего наличие кислорода, углекислого газа, воды в ее жидкой фазе. Ограничивают область распространения жизни и слишком высокие или низкие температуры. Элементы минерального питания также влияют на развитие жизни. К ограничивающему фактору можно отнести и сверхсоленую среду (превышение концентрации солей в морской воде примерно в 10 раз). Лишены жизни подземные воды с концентрацией солей свыше 270 г/л. По представлениям В.Вернадского, биосф включает: 1. живое вещество (совокупность живых организмов) 2. косное вещество (все геологические образования, не входящие в состав живых организмов и не созданные ими) 3. биокосное вещество (нефть) 4. биогенное вещество (геологические породы, созданные живыми организмами) 5. радиоактивное в-во, 6. в-во космического происхождения, 7 рассеянные атомы. Факторы, определяющие границы биосферы, — неблагоприятные условия для жизни организмов. Биосфера по вертикали разделяется на две четко обособленные области: верхнюю, освещенную светом, - фотобиосферу, в которой происходит фотосинтез, и нижнюю, «темную», - меланобиосферу, в которой фотосинтез невозможен. На суше граница между ними проходит по поверхности Земли. В планетарной биосфере выделяют континентальную и океаническую биосферы, которые отличаются геологическими, географическими, биологическими, физическими и другими условиями. Нижний предел распространения живого ограничивается дном океана (глубина около 11 км) или изотермой в 100 град. C в литосфере (по данным сверхглубокого бурения на Кольском полуострове эта цифра составляет около 6 км). Фактически жизнь в литосфере прослеживается до глубины 3-4 км. Таким образом, вертикальная мощность океанической биосферы составляет 17 км, сухопутной до 12 км. Вверх, в атмосферу, биосфера простирается не выше наибольших плотностей озонового экрана, что составляет 22-24 км. Следовательно, предел протяженности биосферы на Земле выражается цифрой 33-35км, хотя теоретически он может быть более широким. Происх-е биосферы: современная биосф возн не сразу, а в рез-те длительной эволюции в процессе постоянного взаимодействия абиотич и биотич ф-ров. (см продолжение на др стр)(стоянного взаимодействия абиотич и биотич ф-ров.сразу, а в рез-те длительной эволюции-ва промежутка времени В сжатом виде идеи В.Вернадского об эволюции биосферы м.б. сформулированы следующим образом: 1 . вначале сформировалась литосфера, а затем после появления жизни на суше – биосфера. 2. современное живое вещ-во генетически связано с живым вещ-вом прошлых геологических эпох. 3. живые орг-мы – главный фактор миграции хим эл-тов в земной коре 4. кол-во орг-мов бесконечно велико и действуют они практически в течение бесконечно большого промежутка времени 5. основным движущим фактором развития процессов в биосфере явл-ся биохим энергия живого в-ва Продолжение см на обороте!!! | 2. Энергетический баланс биосферы. Круговорот веществ в биосфере. Большой и малый круговорот.Энергетический баланс биосферы - соотношение между поглощаемой и излучаемой энергией. Определяется приходом энергии Солнца и космических лучей, которая усваивается растениями в ходе фотосинтеза, часть преобразуется в другие виды энергии и еще часть рассеивается в космическом пространстве. Круговорот веществ в биосфере - повторяющиеся процессы превращений и пространственных перемещений веществ, имеющие определенное поступательное движение, выражающееся в качественных и количественных различиях отдельных циклов. Выделяют два вида круговорота: – большой (геологический) (круговорот веществ протекает от нескольких тысяч до нескольких миллионов лет, включая в себя такие процессы, как круговорот воды и денудация суши. Денудация суши складывается из общего изъятия вещества суши (52990 млн.т/год), общего привноса вещества на сушу (4043 млн.т/год) и составляет 48947 млн.т/год. Антропогенное вмешательство ведет к ускорению денудации, приводя, например, к землетрясениям в зонах водохранилищ, построенных в сейсмоактивных районах) – малый (биотический) (круговорот вещества происходит на уровне биогеоценоза или биогеохимического цикла)
| 3. Круговорот важнейших химических элементов в биосфере: углерода, азота, фосфора, кислорода.Наиболее жизненно важными можно считать в-ва, из кот-х в осн сост белковые молекулы. К ним относятся углерод, азот, кислород, фосфор, сера. Углерод в биосфере часто представлен наиболее подвижной формой – C02. Источником является вулканическая деятельность, связанная с вековой дегазацией мантии и нижних слоев земной коры. В круговороте С четко прослеживается трофич цепь: продуценты, улавливающие С из атмосферы при фотосинтезе, консуенты – поглощающие С вместе с телами продуцентов и консументов низших порядков, редуцентов – возвращающих С вновь в круговорот. Скорость оборота СО2 – ок 300 лет. Главный резервуар биологически связанного С – леса. Вмешательство чвка в круговорот С приводит к возрастанию содержания СО2 в атмосфере. Азот.При гниении органических веществ значительная часть содержащегося в них азота превращается в NH4, который под влиянием живущих в почве нитрифицирующих бактерий окисляется в азотную кислоту. Она вступая в реакцию с находящимся в почве карбонатами (например с СаСО3), образует нитраты: 2HN03 + СаСО3 Са(NО3)2 + СО2 + Н20 Некоторая же часть азота всегда выделяется при гниении в свободном виде в атмосферу. Свободный азот выделяется также при горении органических веществ, при сжигание дров, каменного угля, торфа. Кроме того, существуют бактерии, которые при недостаточном доступе воздуха могут отнимать O2 от нитратов, разрушая их с выделением свободного азота. Деятельность этих денитрифицирующих бактерий приводит к тому, что часть азота из доступной для зеленых растений формы (нитраты) переходит в недоступную (свободный азот). Т.о., далеко не весь азот, входивший в состав погибших растений, возвращается обратно в почву; часть его постепенно выделяется в свободном виде. В природе существуют процессы возмещения потери азота: происходящие в атмосфере электрические разряды, при которых всегда образуется некоторое количество оксидов азота; жизнедеятельность так называемых азотобактерий, способных образом, в природе совершается усваивать атмосферный азот. Таким непрерывный круговорот азота. Фосфор входит в состав генов и молекул, переносящих энергию внутрь клеток. Общий круговорот Р можно разделить на 2 части: водную и наземную. В различных минералах P содержится в виде неорганического фосфатиона (PO43-). Фосфаты растворимы в воде, но не летучи. Растения поглощают PO43- из водного раствора и включают фосфор в состав различных органических соединений, где он выступает в форме т.н. органического фосфата. По пищевым цепям P переходит от растений ко всем прочим организмам экосистемы. При каждом переходе велика вероятность окисления содержащегося P соединения в процессе клеточного дыхания для получения органической энергии. Когда это происходит, фосфат в составе мочи или ее аналога вновь поступает в окружающую среду, после чего снова может поглощаться растениями и начинать новый цикл. В отличие, например, от CO2, который, где бы он ни выделялся в атмосферу, свободно переносится в ней воздушными потоками, пока снова не усвоится растениями, у фосфора нет газовой фазы и, следовательно, нет «свободного возврата» в атмосферу. Попадая в водоемы, фосфор насыщает, а иногда и перенасыщает экосистемы. Обратного пути нет. Океанические отложения фосфата со временем поднимаются над поверхностью воды в результате геологических процессов, но это происходит в течение миллионов лет. Кислород. Кислород - наиболее активный газ. В пределах биосферы происходит быстрый обмен кислорода среды с живыми организмами или их остатками после гибели. В составе земной атмосферы кислород занимает второе место после азота. Господствующей формой нахождения кислорода в атмосфере является молекула О2. Круговорот кислорода в биосфере весьма сложен, поскольку он вступает во множество химических соединений минерального и органического миров. Скорость круговорота кислорода – 2 тыс. лет, именно за это время весь кислород атмосферы проходит через живое вещ-во. Основной поставщик кислорода на Земле – зеленые растения. Главный потребитель кислорода – животные, почвенные орг-мы и растения, использующие его в процессе дыхания. В истории биосферы Земли наступило такое время, когда кол-во выделяемого кислорода стало равным количеству поглощаемого кислорода. | 4. Круговорот металлов. Ресурсный цикл как антропогенный круговорот. Поведение металлов в природных средах во многом зависит от специфичности миграционных форм и вклада каждой из них в общую концентрацию металла в экосистеме. Для понимания миграционных процессов и оценки токсичности тяжелых металлов недостаточно определить только их валовое содержание. Необходимо дифференцировать формы металлов в зависимости от химического состава и физической структуры: окисленные, восстановленные, метилированные, хелатированные и др. Наибольшую опасность представляют лабильные формы, которые характеризуются высокой биохимической активностью и накапливаются в биосредах. Особенностью металлов как загрязнителей является то, что в отличие от органических закрязняющих веществ, подвергающихся процессам разложения, металлы способны лишь к перераспределению. Металлы-токсиканты в различных формах способны загрязнять все три области биосферы - воздух, воду и почву. Поступление тяжелых металлов в окружающую среду имеет как естественное, так и техногенное происхождение. Техногенная доля меди и цинка в атмосфере - 75%, кадмия и ртути - 50%, никеля 30%, кобальта - 10%. Наиболее высокая эмиссия в атмосферу характерна для свинца - 50...80%. В атмосфере тяжелые металлы присутствуют в форме органических и неорганических соединений в виде пыли и аэрозолей, а также в газообразной форме (ртуть). Основные механизмы выведения тяжелых металлов из атмосферы - вымывание с осадками и осаждение на подстилающую поверхность. В водных средах тяжелые металлы присутствуют в трех формах: взвешенной, коллоидной и растворенной. Последняя представлена свободными ионами и растворимыми комплексными соединениями с органическими и неорганическими лигандами. Для неорганических соединений - это галогениды, сульфаты, фосфаты, карбонаты и др.. Среди органических лигандов наиболее прочными являются комплексы гуминовых и фульвокислот (преимущественно низкомолекулярных), входящих в состав гумусовых веществ почвы и природных вод. Следует заметить, что значительная часть тяжелых металлов переносится поверхностными водами во взвешенном состоянии. Сорбция металлов донными отложениями зависит от особенностей их состава и содержания органических веществ. В конечном итоге тяжелые металлы в водных экосистемах концентрируются в придонных осадках и в биоте, в то время как в самой воде они остаются в сравнительно небольших концентрациях. Так, при концентрации ртути в донных отложениях 80-800 мкг/кг ее содержание в воде не превышает 0,1-3,6 мкг/кг. Ресурсный цикл (антропогенный круговорот веществ) - совокупность превращений и пространственных перемещений определенного вещества или группы веществ на всех этапах использования их человеком. Цикл фактически не замкнут из-за потерь, например, каменный уголь обратно в места залегания не возвращается. Антропогенный круговорот естественен, как и любой другой, но предполагает разумное волевое начало.
|
5. Системный анализ. Математические модели. Моделирование в экологии. Разработка системных и информационных методов изучения процессов, протекающих эколого-экономических системах, является актуальной задачей, которую предстоит решать для достижения устойчивого развития человеческой цивилизации в условиях серьёзных глобальных проблем, по всей видимости, ожидающих ее уже в следующем столетии. Математическое моделирование в экологии сообществ – достаточно обширная область исследования и по выбору объектов моделирования, и по набору методов, и по спектру решаемых задач. В зависимости от цели моделирования, можно выделить два типа моделей: дескриптивные модели и модели поведения. Дескриптивная модель позволяет получить информацию о взаимосвязях между наиболее важными переменными экосистемы. Реализуется такой тип модели методами стохастического моделирования, основанного на инструментах теории вероятностей и математической статистики. Разделяют статические методы, не учитывающие время в качестве переменной (простая и множественная линейная и нелинейная корреляция и регрессия; дисперсионный, дискриминантный и факторный виды анализа, методы оценки параметров), и динамические методы, которые учитывают временную переменную (анализ Фурье, корреляционный и спектральный анализ, весовые и передаточные функции). Модели поведения описывают системы во время переходного периода от одного состояния к другому. Для осуществления этой категории моделей изучают: 1) структуру сигналов на входе и выходе системы; 2) реакцию системы на особые проверочные сигналы; 3) внутреннюю структуру системы. Классификация математических моделей. Различают три класса: 1) описательные модели; 2) качественные модели (выясняющие динамический механизм изучаемого процесса, способные воспроизвести наблюдаемые динамические эффекты в поведении системы); 3) имитационные модели конкретных сложных систем, учитывающие всю имеющуюся информацию об объекте (и позволяющие прогнозировать поведение систем или решать оптимизационные задачи их эксплуатации). Особое значение придается именно последнему классу моделей, поскольку он оказывается полезным для практических целей.
| 6. Основные формы антропогенного воздействия на биосферу. Понятие об экологическом кризисе. Исторические этапы изменения биосферы человеком: 1. воздействие на природу человека как биологического вида. 2. Сверхинтенсивная охота. 3. Скотоводство. 4. Земледелие. 5. 300 лет назад – глобальное изменение всех компонентов биосферы. Понятие об экологическом кризисе. Глобальное изменение всех компонентов биосферы. Источники загрязнения: 1. Промышленные предприятия. 2. ТЭК. 3. Бытовые отходы. 4. Отходы транспорта. 5. Отходы животноводства. 6. Химические вещества. Состав загрязнений: Твердые вещества, химические соединения, Me, Оксиды, Аэрозоли, Жидкости. Естественное, антропогенное. Формы воздействия человека на биосферу: 1. Изменение структуры земной поверхности. 2. Изменение состава биосферы, круговорота и баланса слагающих ее веществ. 3. изменение энергетического баланса биосферы. 4. изменение, вносимые в биоту.
| 7. Воздействие среды на здоровье человекаУдовлетворение бесчисленных запросов современного человека вступает в острый конфликт с первоосновой потребностей каждого – сохранением здоровой среды обитания. Трудности, порождаемые развитием цивилизации, растущая деградация природной среды и ухудшение условий жизни людей порождает необходимость действовать, искать новые концепции общественного развития. Загрязнение окружающей среды (воздуха, воды и земли), рабочих мест и даже индивидуальных жилищ во многих районах мира является настолько серьезным, что оказывает пагубное воздействие на здоровье сотен миллионов людей. Это обусловлено, в частности, существовавшими ранее и нынешними тенденциями в области моделей производства и потребления и стилей жизни, в производстве и использовании энергии в промышленности, на транспорте и т.д., где вопросам охраны окружающей среды уделяется чрезвычайно мало внимания или они вообще игнорируются. Серьезная опасность для здоровья, обусловленная воздействием развития на окружающую среду, существует в новых индустриальных странах. Кроме того, результаты последнего исследования, проведенного ВОЗ, четко указывают на существование взаимозависимости между факторами здоровья, окружающей среды и развития и на то, что в большинстве стран эти факторы не увязаны между собой, что обеспечило бы эффективность механизмов борьбы с загрязнением. | 1 (продолжение) Происхождение биосферы: 3,6 млрд. лет назад возникла в воде, О2 не было. 1 этап Возникновение жизни из неживой природы, т. Чапанина 1953 подтверждена С. Миллером. 3,5 млрд. лет назад не было атм. CO2, H20, CH4, NH3. Эти вещества образовали свободные радикалы. Появление органического вещества – аминокислоты, сахара и др. 3 млрд. лет назад образовались первые клетки. 2 этап Развитие клетки организмов 1,5-2 млрд. лет назад 3 этап Большой биологический взрыв. 450 млн. лет назад 4 этап Антропогенный этап 1,5 млн. лет назад Ноосфера (сфера разума) – высшая стадия развития биосферы. Понятие ноосферы возникло в связи с оценкой роли чвка в эволюции биосферы. По мнению многих ученых, ноосф в будущем станет особой обл-тью Солнечной системы. Ноосферогенез – развитие разума. Биосфера -> Ноосфера. Ноосфера – сфера разума. биосфераэкосистемапопуляция
|