Шпаргалка по "Металлургии"

Автор: Пользователь скрыл имя, 09 Февраля 2013 в 17:11, шпаргалка

Краткое описание

Основные свойства металлов. Полиморфные превращения в металлах.
Металлы – один из классов конструкционных материалов, характеризующийся определ¨нным набором свойств:
«металлический блеск» (хорошая отражательная способность);
пластичность;
высокая теплопроводность;
высокая электропроводность

Файлы: 1 файл

Ответы на вопросы к экзамену по материаловедению.doc

— 845.00 Кб (Скачать)

Широкое применение дюралюмины находят  в авиастроении, автомобилестроении, строительстве.

Высокопрочными стареющими сплавами являются сплавы, которые кроме меди и магния содержат цинк. Сплавы В95, В96 имеют предел прочности около 650 МПа. Основной потребитель – авиастроение (обшивка, стрингеры, лонжероны).

Ковочные алюминиевые  сплавы АК:, АК8 применяются для изготовления поковок. Поковки изготавливаются при температуре 380…450oС, подвергаются закалке от температуры 500…560oС и старению при 150…165oС в течение 6…15 часов.

В состав алюминиевых сплавов дополнительно  вводят никель, железо, титан, которые  повышают температуру рекристаллизации и жаропрочность до 300oС.

Изготавливают поршни, лопатки и  диски осевых компрессоров, турбореактивных двигателей.  

 

Литейные  алюминиевые сплавы. 

 

К литейным сплавам относятся сплавы системы алюминий – кремний (силумины), содержащие 10…13 % кремния.

Присадка к силуминам магния, меди содействует эффекту упрочнения литейных сплавов при старении. Титан и цирконий измельчают зерно. Марганец повышает антикоррозионные свойства. Никель и железо повышают жаропрочность.

Литейные сплавы маркируются от АЛ2 до АЛ20. Силумины широко применяют  для изготовления литых деталей  приборов и других средне- и малонагруженных деталей, в том числе тонкостенных отливок сложной формы.

 

50. Пластическая деформация. Наклёп и рекристаллизация.

Особенности деформации поликристаллических тел.  

 

Рассмотрим холодную пластическую деформацию поликристалла. Пластическая деформация металлов и сплавов как тел поликристаллических, имеет некоторые особенности по сравнению с пластической деформацией монокристалла.

Деформация поликристаллического тела складывается из деформации отдельных  зерен и деформации в приграничных объемах. Отдельные зерна деформируются скольжением и двойникованием, однако взаимная связь зерен и их множественность в поликристалле вносят свои особенности в механизм деформации.

Плоскости скольжения зерен произвольно  ориентированны в пространстве, поэтому  под влиянием внешних сил напряжения в плоскостях скольжения отдельных зерен будут различны. Деформация начинается в отдельных зернах, в плоскостях скольжения которых возникают максимальные касательные напряжения. Соседние зерна будут разворачиваться и постепенно вовлекаться в процесс деформации. Деформация приводит к изменению формы зерен: зерна получают форму, вытянутую в направлении наиболее интенсивного течения металла (поворачиваются осями наибольшей прочности вдоль направления деформации). Изменение структуры при деформации показано на рис. 8.1.

Рис. 8.1. Изменение структуры при  деформации: а) до деформации; б) после  обжатия на 35%; в) после обжатия на 90%. 

 

Металл приобретает волокнистое  строение. Волокна с вытянутыми вдоль  них неметаллическими включениями  являются причиной неодинаковости свойств  вдоль и поперек волокон. Одновременно с изменением формы зерен в  процессе пластической деформации происходит изменение ориентировки в пространстве их кристаллической решетки.

Когда кристаллические решетки  большинства зерен получают одинаковую ориентировку, возникает текстура деформации. 

 

Влияние пластической деформации на структуру и свойства металла: наклеп 

 

Текстура деформации создает кристаллическую анизотропию, при которой наибольшая разница свойств проявляется для направлений, расположенных под углом 45o друг к другу. С увеличением степени деформации характеристики пластичности (относительное удлинение, относительное сужение) и вязкости (ударная вязкость) уменьшаются, а прочностные характеристики (предел упругости, предел текучести, предел прочности) и твердость увеличиваются (рис. 8.2). Также повышается электросопротивление, снижаются сопротивление коррозии, теплопроводность, магнитная проницаемость.

Рис.8.2. Влияние холодной пластической деформации на механические свойства металла 

 

Совокупность явлений, связанных с изменением механических, физических и других свойств металлов в процессе пластической деформации называют деформационным упрочнением или наклепом.

Упрочнение при наклепе объясняется  возрастанием на несколько порядков плотности дислокаций:

Их свободное перемещение затрудняется взаимным влиянием, также торможением  дислокаций в связи с измельчением блоков и зерен, искажениями решетки металлов, возникновением напряжений. 

 

Влияние нагрева  на структуру и свойства деформированного металла: возврат и рекристаллизация  

 

Деформированный металл находится  в неравновесном состоянии. Переход  к равновесному состоянию связан с уменьшением искажений в кристаллической решетке, снятием напряжений, что определяется возможностью перемещения атомов.

При низких температурах подвижность  атомов мала, поэтому состояние наклепа  может сохраняться неограниченно  долго.

При повышении температуры металла  в процессе нагрева после пластической деформации диффузия атомов увеличивается и начинают действовать процессы разупрочнения, приводящие металл в более равновесное состояние – возврат и рекристаллизация.

Возврат. Небольшой нагрев вызывает ускорение движения атомов, снижение плотности дислокаций, устранение внутренних напряжений и восстановление кристаллической решетки

Процесс частичного разупрочнения  и восстановления свойств называется отдыхом (первая стадия возврата). Имеет место при температуре

..

Возврат уменьшает искажение кристаллической  решетки, но не влияет на размеры и  форму зерен и не препятствует образованию текстуры деформации.

Полигонизация – процесс деления зерен на части: фрагменты, полигоны в результате скольжения и переползания дислокаций.

При температурах возврата возможна группировка дислокаций одинаковых знаков в стенки, деление зерна  малоугловыми границами (рис. 8.3).

Рис. 8.3. Схема полигонизации: а – хаотическое расположение краевых дислокаций в деформированном металле; б – дислокационные стенки после полигонизации. 

 

В полигонизированном состоянии кристалл обладает меньшей энергией, поэтому образование полигонов — процесс энергетически выгодный.

Процесс протекает при небольших  степенях пластической деформации. В  результате понижается прочность на (10…15) % и повышается пластичность (рис.8.4). Границы полигонов мигрируют в сторону большей объемной плотности дислокаций, присоединяя новые дислокации, благодаря чему углы разориентировки зерен увеличиваются (зерна аналогичны зернам, образующимся при рекристаллизации). Изменений в микроструктуре не наблюдается (рис.8.5 а). Температура начала полигонизации не является постоянной. Скорость процесса зависит от природы металла, содержания примесей, степени предшествующей деформации.

Рис. 8.4. Влияние нагрева деформированного металла на механические свойств 

 

Рис. 8.5. Изменение структуры деформированного металла при нагреве 

 

При нагреве до достаточно высоких  температур подвижность атомов возрастает и происходит рекристаллизация.

Рекристаллизация – процесс зарождения и роста новых недеформированных зерен при нагреве наклепанного металла до определенной температуры.

Нагрев металла до температур рекристаллизации сопровождается резким изменением микроструктуры и свойств. Нагрев приводит к резкому  снижению прочности при одновременном  возрастании пластичности. Также  снижается электросопротивление и повышается теплопроводность.

1 стадия – первичная рекристаллизация (обработки) заключается в образовании  центров кристаллизации и росте  новых равновесных зерен с  неискаженной кристаллической решеткой. Новые зерна возникают у границ  старых зерен и блоков, где решетка была наиболее искажена. Количество новых зерен постепенно увеличивается и в структуре не остается старых деформированных зерен.

Движущей силой первичной рекристаллизации является энергия, аккумулированная в  наклепанном металле. Система стремится перейти в устойчивое состояние с неискаженной кристаллической решеткой.

2 стадия – собирательная рекристаллизация  заключается в росте образовавшихся  новых зерен.

Движущей силой является поверхностная  энергия зерен. При мелких зернах поверхность раздела большая, поэтому имеется большой запас поверхностной энергии. При укрупнении зерен общая протяженность границ уменьшается, и система переходит в более равновесное состояние.

Температура начала рекристаллизации связана с температурой плавления

,

для металлов

для твердых растворов

для металлов высокой чистоты 

На свойства металла большое влияние оказывает размер зерен, получившихся при рекристаллизации. В результате образования крупных зерен при нагреве до температуры t1 начинает понижаться прочность и, особенно значительно, пластичность металла.

Основными факторами, определяющими величину зерен металла при рекристаллизации, являются температура, продолжительность выдержки при нагреве и степень предварительной деформации (рис. 8.6).

Рис. 8.6. Влияние предварительной  степени деформации металла на величину зерна после рекристаллизации 

 

С повышением температуры происходит укрупнение зерен, с увеличением  времени выдержки зерна также  укрупняются. Наиболее крупные зерна образуются после незначительной предварительной деформации 3…10 %. Такую деформацию называют критической. И такая деформация нежелательна перед проведением рекристаллизационного отжига.

Практически рекристаллизационный отжиг  проводят дпя малоуглеродистых сталей при температуре 600…700oС, для латуней и бронз – 560…700oС, для алюминевых сплавов – 350…450oС, для титановых сплавов – 550…750oС.

 

71. Цементуемые стали.  Цементация. Изменение структуры  и свойств в результате цементации  и последующей термической обработки. 

 

Цементация – химико-термическая обработка, заключающаяся в диффузионном насыщении поверхностного слоя атомами углерода при нагреве до температуры 900…950 oС.

Цементации подвергают стали с  низким содержанием углерода (до 0,25 %).

Нагрев изделий осуществляют в среде, легко отдающей углерод. Подобрав режимы обработки, поверхностный слой насыщают углеродом до требуемой глубины.

Глубина цементации (h) – расстояние от поверхности изделия до середины зоны, где в структуре имеются одинаковые объемы феррита и перлита ( h. = 1…2 мм).

Степень цементации – среднее содержание углерода в поверхностном слое (обычно, не более 1,2 %).

Более высокое содержание углерода приводит к образованию значительных количеств цементита вторичного, сообщающего слою повышенную хрупкость.

На практике применяют цементацию в твердом и газовом карбюризаторе (науглероживающей среде).

Участки деталей, которые не подвергаются цементации, предварительно покрываются  медью (электролитическим способом) или глиняной смесью. 

 

Цементация в твердом карбюризаторе. 

 

Почти готовые изделия, с припуском  под шлифование, укладывают в металлические  ящики и пересыпают твердым карбюризатором. Используется древесный уголь с  добавками углекислых солей ВаСО3, Na2CO3 в количестве 10…40 %. Закрытые ящики укладывают в печь и выдерживают при температуре 930…950 oС.

За счет кислорода воздуха происходит неполное сгорание угля с образованием окиси углерода (СО), которая разлагается с образованием атомарного углерода по реакции:

Образующиеся атомы углерода адсорбируются  поверхностью изделий и диффундируют вглубь металла.

Недостатками данного способа  являются:

  • значительные затраты времени (для цементации на глубину 0,1 мм затрачивается 1 час);
  • низкая производительность процесса;
  • громоздкое оборудование;
  • сложность автоматизации процесса.

Способ применяется в мелкосерийном  производстве. 

 

Газовая цементация.  

 

Процесс осуществляется в печах  с герметической камерой, наполненной газовым карбюризатором.

Атмосфера углеродосодержащих газов  включает азот, водород, водяные пары, которые образуют газ-носитель, а  также окись углерода, метан и  другие углеводороды, которые являются активными газами.

Глубина цементации определяется температурой нагрева и временем выдержки.

Преимущества способа:

  • возможность получения заданной концентрации углерода в слое (можно регулировать содержание углерода, изменяя соотношение составляющих атмосферу газов);
  • сокращение длительности процесса за счет упрощения последующей термической обработки;
  • возможность полной механизации и автоматизации процесса.

Способ применяется в серийном и массовом производстве. 

 

Структура цементованного слоя 

 

Структура цементованного слоя представлена на рис. 15.1.

Рис. 15.1. Структура цементованного слоя 

 

На поверхности изделия образуется слой заэвтектоидной стали, состоящий  из перлита и цементита. По мере удаления от поверхности, содержание углерода снижается и следующая зона состоит только из перлита. Затем появляются зерна феррита, их количество, по мере удаления от поверхности увеличивается. И, наконец, структура становится отвечающей исходному составу. 

 

Термическая обработка после цементации 

Информация о работе Шпаргалка по "Металлургии"