Автор: Пользователь скрыл имя, 03 Декабря 2015 в 21:43, реферат
Газовая сварка используется больше 100 лет и технология газовой сварки до сих пор актуальна в деле сварки металлов.
После появились новые виды — дуговая, с электродом, портативная — полуавтоматом и в защитных средах (к примеру, сварка в углекислом газе), потому технология газовой сварки отошла на второй план, особенно в промышленности.
Кислород хранится в баллоне под постоянным давлением, вследствие контакта с маслом самовоспламеняется. Лучшая мера предосторожности – убрать газовые баллоны для сварки в закрытое от солнца и контакта место, тщательно очистить от пыли, грязи и не прикасаться к нему пропитанными чем бы то ни было перчатками.
Сварочный кислород получается из обычного воздуха, какой был отделен от СО2 и Н2О в воздухоразделительной установке. Существует 3 сорта кислорода, используемого в сварке: высший (99.5%), 1 и 2 сорта (99.2 и 98.5 процентов соответственно).
На остаток приходится смесь Ar и N.
Ацетилен – смесь H и O, бесцветный газ для сварки с небольшим присутствием NH4 и H2S. Получается через диссоциацию жидких углеводородов под действием электричества.
Чаще всего в баллоне при диссоциации карбида кальция водой.
Правило гласит: чтобы сварочный процесс свершился, температура на выходе должна быть в 2 раза выше, чем порог плавки металла.
Как замена используются водород, метан, пропан, керосиновые пары, но температура их горения находится в пределах 2400-2800 градусов, что меньше 3150 градусов при горении ацетилена.
Если давление превышает 1.5 кг/см2 и температура превышает 4000С, то он может взорваться.
Основное преимущество вышеуказанных газов заключается в дешевизне производства. Однако применение заместителей диктовано характером нагрева и плавящимся металлом.
К примеру, сталь требует виды проволоки с марганцем и кремнием, которая раскисляет ее, а плавящимся цветным металлам нужен флюс.
Еще один минус – не все виды газов имеют высокую теплопроводность.
Проволока и сварочный флюс – неотъемлемые компоненты, которые вносят плавящимся материалам нужные компоненты для надежного шва.
Проволока может быть только без краски и масла, коррозии, при этом порог ее плавления равен или ниже порога плавления металлов.
В ее отсутствие выручит тонкая полоска тех же металлов, которые свариваются.
Сплавы Cu, Mg, Al и металлы вообще во время сварки производят окислы, плавящиеся при большей температуре, нежели сам металл.
Они накрывают металл тонким трудно плавящимся покрытием, усложняя сварку.
Плавящимся металлам требуется присутствие защитных флюсов.
Флюс наносится непосредственно на металл или проволоку до сварки, плавится и выдает плавкий шлак, какой покрывает плавленый металл поверхностно.
Борная кислота и бура выступают в роли защитных флюсов.
Углеродистая сталь варится без добавок, а газовая сварка чугуна, меди и стали требует как раз защитных флюсов.
Редуктор меняет состав смеси из кислорода и газа (не только ацетилена) — так сварщик меняет характер пламени.
Так получаются 3 типа пламени: восстановительное (для почти всех металлов + для работы в защитных средах), окислительное (обязательна проволока с кремнием и марганцем), с избытком газа (для прочных сплавов).
Металл плавится с небольшим объемом ванны и заметной локализацией тепла, металл плавится довольно быстро и также скоро остывает.
При плавке в ванне проходит восстановление и окисление, причем алюминий и магний окисляются легче всего.
Так как окислы этих металлов не восстанавливают H и CO2, требуется пользоваться флюсом.
Никельные и железные окислы напротив – восстанавливаются легко, потому флюсы для них не требуются.
Вдоль шва расположена зона частичной плавки, в ней прочность меньше, чем в шве, потому в данной точке соединение чаще всего разрушается.
Далее следует участок без кристаллизации с большими зернами, в которой температура плавления уже менее 1200 градусов.
Каждый участок после этого порога при нагревании имеет более нормальную структуру с мелкими зернами.
Для образования и поддержания электрической дуги к электроду и свариваемому изделию (см. рисунок) от источника питания подводится сварочный ток (переменный или постоянный).
Рисунок. Ручная дуговая сварка
Если положительный полюс источника питания (анод) присоединен к изделию, говорят, что ручная дуговая сварка производится на прямой полярности. Если на изделии отрицательный полюс, то полярность обратная. Под действием дуги расплавляются металлический стержень электрода (электродный металл), его покрытие и металл изделия (основной металл). Электродный металл в виде отдельных капель, покрытых шлаком, переходит в сварочную ванну, где смешивается с основным металлом, а расплавленный шлак всплывает на поверхность.
Размеры сварочной ванны зависят от режимов и пространственного положения сварки, скорости перемещения дуги по поверхности изделия, конструкции сварного соединения, формы и размера разделки свариваемых кромок и т.д. Они обычно находятся в следующих пределах: глубина до 6 мм, ширина 8–15 мм, длина 10–30 мм.
Длина дуги – расстояние от активного пятна на поверхности сварочной ванны до другого активного пятна на расплавленной поверхности электрода. В результате плавления покрытия электрода вокруг дуги и над сварочной ванной образуется газовая атмосфера, оттесняющая воздух из зоны сварки для предотвращения его взаимодействия с расплавленным металлом. В газовой атмосфере также присутствуют пары легирующих элементов, основного и электродного металлов.
Шлак, покрывая капли расплавленного электродного металла и поверхность сварочной ванны, препятствует их взаимодействию с воздухом, а также способствует очищению расплавленного металла от примесей.
По мере удаления дуги металл сварочной ванны кристаллизуется с образованием шва, соединяющего свариваемые детали. На поверхности шва образуется слой затвердевшего шлака.