Основные виды сварки

Автор: Пользователь скрыл имя, 03 Декабря 2015 в 21:43, реферат

Краткое описание

Газовая сварка используется больше 100 лет и технология газовой сварки до сих пор актуальна в деле сварки металлов.
После появились новые виды — дуговая, с электродом, портативная — полуавтоматом и в защитных средах (к примеру, сварка в углекислом газе), потому технология газовой сварки отошла на второй план, особенно в промышленности.

Файлы: 1 файл

Газовая сварка используется больше 100 лет и технология газовой сварки до сих пор актуальна в деле сварки металлов.docx

— 399.74 Кб (Скачать)

Газовая сварка используется больше 100 лет и технология газовой сварки до сих пор актуальна в деле сварки металлов.

После появились новые виды — дуговая, с электродом, портативная — полуавтоматом и в защитных средах (к примеру, сварка в углекислом газе), потому технология газовой сварки отошла на второй план, особенно в промышленности.

Преимущества и недостатки газовой сварки

Газовая сварка идет посредством плавления материалов, образующих гомогенную структуру: материалы плавятся и после соединяются.

Газ для сварки горит, как смесь в присутствии очищенного кислорода.

Имеет следующие преимущества:

  • Простой тип сварки/резки, дорогостоящий сварочный аппарат не требуется (если только не сварка полуавтоматом или электродом);

  • Газ/смесь для сварки/резки можно приобрести без проблем;

  • Газовая сварка не нуждается в мощном источнике энергии и защитных средах (по ситуации);

  • Пламя/смесь можно контролировать – менять его мощность, виды, регулировать нагрев деталей при сварке и для резки.

Не лишена и недостатков:

  • Малая быстрота нагрева металлов горелкой (полуавтоматом выгоднее).

  • Газовая сварка выдает широкую зону тепла;

  • Тепло сильно рассеивается, плохо концентрируется, нежели при дуговой;

  • Заметный минус кроется в цене топлива/электричества. Конечно, аппарат дуговой сварки или сварки электродом расходует электричество нещадно, но при подсчете окажется все равно дешевле того же ацетилена и кислорода;

  • Плохая тепловая концентрация снижает результативность газовой сварки/резки с возрастанием толщины: при толщине 1 мм темп составит приблизительно 10 метров в час, а при 1 см толщины — всего 2 метра в час. Потому для деталей от 5 мм используется дуговой метод или сварка полуавтоматом/электродом;

  • Плохо механизируется. Автоматическая происходит при сварке труб с тонкой стенкой в продольном шве при работе многопламенной горелки, и то только в некоторых операциях (производство тонкостенных полых резервуаров, газовая сварка труб небольшого диаметра, газовая сварка алюминия, газовая сварка чугуна, различных их сплавов).

Компоненты сварки

В настоящее время используют различные газы, какой из них выбрать и как применять, опишем ниже.

Кислород

Газ для сварки и резки, не имеет цвета и запаха. Способствует быстрому воспламенению паров горючих материалов.

Сварочный кислород выступает как катализатор плавления/резки металлов в присутствии основного горючего газа.

Кислород хранится в баллоне под постоянным давлением, вследствие контакта с маслом самовоспламеняется. Лучшая мера предосторожности – убрать газовые баллоны для сварки в закрытое от солнца и контакта место, тщательно очистить от пыли, грязи и не прикасаться к нему пропитанными чем бы то ни было перчатками.

Сварочный кислород получается из обычного воздуха, какой был отделен от СО2 и Н2О в воздухоразделительной установке. Существует 3 сорта кислорода, используемого в сварке: высший (99.5%), 1 и 2 сорта (99.2 и 98.5 процентов соответственно).

На остаток приходится смесь Ar и N.

Ацетилен

Ацетилен – смесь H и O, бесцветный газ для сварки с небольшим присутствием NH4 и H2S. Получается через диссоциацию жидких углеводородов под действием электричества.

Чаще всего в баллоне при диссоциации карбида кальция водой.

Заменители ацетилена

Правило гласит: чтобы сварочный процесс свершился, температура на выходе должна быть в 2 раза выше, чем порог плавки металла.

Как замена используются водород, метан, пропан, керосиновые пары, но температура их горения находится в пределах 2400-2800 градусов, что меньше 3150 градусов при горении ацетилена.

 

Если давление превышает 1.5 кг/см2 и температура превышает 4000С, то он может взорваться.

Основное преимущество вышеуказанных газов заключается в дешевизне производства. Однако применение заместителей диктовано характером нагрева и плавящимся металлом.

К примеру, сталь требует виды проволоки с марганцем и кремнием, которая раскисляет ее, а плавящимся цветным металлам нужен флюс.

Еще один минус – не все виды газов имеют высокую теплопроводность.

Проволока и флюс

Проволока и сварочный флюс – неотъемлемые компоненты, которые вносят плавящимся материалам нужные компоненты для надежного шва.

Проволока может быть только без краски и масла, коррозии, при этом порог ее плавления равен или ниже порога плавления металлов.

В ее отсутствие выручит тонкая полоска тех же металлов, которые свариваются.

Сплавы Cu, Mg, Al и металлы вообще во время сварки производят окислы, плавящиеся при большей температуре, нежели сам металл.

Они накрывают металл тонким трудно плавящимся покрытием, усложняя сварку.

Плавящимся металлам требуется присутствие защитных флюсов.

Флюс наносится непосредственно на металл или проволоку до сварки, плавится и выдает плавкий шлак, какой покрывает плавленый металл поверхностно.

Борная кислота и бура выступают в роли защитных флюсов.

Углеродистая сталь варится без добавок, а газовая сварка чугуна, меди и стали требует как раз защитных флюсов.

Оборудование для сварки

  1. Водяной затвор. Нужен для защиты генератора ацетилена и трубы от обратной тяги огня из горелки. Затвор – главный компонент поста, он должен быть исправным и наполняться водой вровень с краном. Затвор стоит между горелкой/резаком и газопроводом/генератором ацетилена;

  1. Газовый баллон. Баллон имеет конусную резьбу на отверстии, на которую ставится закрывающий вентиль. Снаружи баллон имеет условный цвет по роду газа: голубой – кислород, белый – ацетилен, зелено-желтый — водород, красный — прочие газы. Верхняя часть баллона никогда не красится (нельзя допускать контакта газа с маслом в краске). Для ацетилена можно использовать вентиль, который сделан из любого металла, кроме меди – ацетилен с медью образует взрывоопасную ацетиленовую медь;

  1. Редуктор. Редуктор снижает давление выходящего газа. Редуктор бывает одно- или двухкамерный, причем последний держит более стабильное давление. Бывает редуктор прямого действия и редуктор обратного действия. Кстати, для кислорода и ацетилена есть свой отдельный редуктор. Любой редуктор одновременно является клапаном сброса давления. Редуктор в сварке сжиженным газом имеет оребрение во избежание вымерзания газа при выходе;

  1. Шланги. Шланги для горючего газа имеют сплошную линию из красного цвета, как обозначение. Такие шланги работают при давлении до 6 атм. Это шланги 1 класса, шланги 2 класса нужны для передачи горючей жидкости (бензин, керосин). Они имеют желтую полосу по всей длине. Шланги 3 класса – синего цвета, они работают при давлении до 20 атм;

  1. Горелка. Этот аппарат смешивает газы, выпускает из мундштука под нужным давлением смесь, которая плавит металлы. Бывают безинжекторный и инжекторный виды, причем последний более распространен. В аппарат входят: мундштук, ниппель, наконечник, камера-смеситель, гайки, инжектор, корпус с рукоятью и ниппель для газов. Горелка бывает микромалой, малой, средней и большой мощности (в зависимости от максимально пропускаемого и сжигаемого объема газов в единицу времени). В случае работы полуавтоматом пламени нет как такового;

  1. Пост. Пост для сварки – надлежаще обустроенное место для работы. Пост представлен в виде стола с тумбами и местами для хранения инструмента. Пост бывает с поворотной или неповоротной столешницей. Пост поворотный нужен для мелкой работы. Но для работы в большом цеху используется передвижной пост или стационарный, предустановленный пост. ГОСТ требует снабдить пост вытяжкой или постоянным доступом воздуха, так как газосварочное оборудование выделяет опасные пары при плавке. Пост улучшает качество труда – пост не позволяет постоянно нагибаться и стоять в непривычной позиции (на видео представлен образцовый пост для работы).

Технология сварки

Редуктор меняет состав смеси из кислорода и газа (не только ацетилена) — так сварщик меняет характер пламени.

Так получаются 3 типа пламени: восстановительное (для почти всех металлов + для работы в защитных средах), окислительное (обязательна проволока с кремнием и марганцем), с избытком газа (для прочных сплавов).

Металл плавится с небольшим объемом ванны и заметной локализацией тепла, металл плавится довольно быстро и также скоро остывает.

При плавке в ванне проходит восстановление и окисление, причем алюминий и магний окисляются легче всего.

Так как окислы этих металлов не восстанавливают H и CO2, требуется пользоваться флюсом.

Никельные и железные окислы напротив – восстанавливаются легко, потому флюсы для них не требуются.

Вдоль шва расположена зона частичной плавки, в ней прочность меньше, чем в шве, потому в данной точке соединение чаще всего разрушается.

Далее следует участок без кристаллизации с большими зернами, в которой температура плавления уже менее 1200 градусов.

Каждый участок после этого порога при нагревании имеет более нормальную структуру с мелкими зернами.

Для повышения качества шва и всей каймы вокруг него применяется термическая ковка шва или нагрев той же самой горелкой.

 

Ручная дуговая сварка – это сварка покрытым металлическим электродом. Является наиболее старой и универсальной технологией дуговой сварки.

 

Технология ручной дуговой сварки

Для образования и поддержания электрической дуги к электроду и свариваемому изделию (см. рисунок) от источника питания подводится сварочный ток (переменный или постоянный).

Рисунок. Ручная дуговая сварка

Если положительный полюс источника питания (анод) присоединен к изделию, говорят, что ручная дуговая сварка производится на прямой полярности. Если на изделии отрицательный полюс, то полярность обратная. Под действием дуги расплавляются металлический стержень электрода (электродный металл), его покрытие и металл изделия (основной металл). Электродный металл в виде отдельных капель, покрытых шлаком, переходит в сварочную ванну, где смешивается с основным металлом, а расплавленный шлак всплывает на поверхность.

Размеры сварочной ванны зависят от режимов и пространственного положения сварки, скорости перемещения дуги по поверхности изделия, конструкции сварного соединения, формы и размера разделки свариваемых кромок и т.д. Они обычно находятся в следующих пределах: глубина до 6 мм, ширина 8–15 мм, длина 10–30 мм.

Длина дуги – расстояние от активного пятна на поверхности сварочной ванны до другого активного пятна на расплавленной поверхности электрода. В результате плавления покрытия электрода вокруг дуги и над сварочной ванной образуется газовая атмосфера, оттесняющая воздух из зоны сварки для предотвращения его взаимодействия с расплавленным металлом. В газовой атмосфере также присутствуют пары легирующих элементов, основного и электродного металлов.

Шлак, покрывая капли расплавленного электродного металла и поверхность сварочной ванны, препятствует их взаимодействию с воздухом, а также способствует очищению расплавленного металла от примесей.

По мере удаления дуги металл сварочной ванны кристаллизуется с образованием шва, соединяющего свариваемые детали. На поверхности шва образуется слой затвердевшего шлака.

Способы зажигания дуги при ручной дуговой сварке

Информация о работе Основные виды сварки