Методы плазменного поверхностного упрочнения

Автор: Пользователь скрыл имя, 31 Января 2013 в 13:18, курсовая работа

Краткое описание

В настоящее время наиболее широко исследу¬ются следующие направления:
1. Закалка сплавов из твердого состояния со скоростями нагрева и охлажде¬ния 102-104ºС\с;
2. Закалка сплавов из жидкого состояния с высокими скоростями плавления и кристаллизации 102 – 105 º С\с ;

Файлы: 1 файл

плазменные методы упрочнения.doc

— 387.50 Кб (Скачать)

Табл.5.

Марка сплава

Химический  состав, %

 

HRC

C

Si

Cr

Co

W

WC

TiC

TaC

Cтеллит 1

Стеллит 2

Релит

Т15К6

Т30К

ВК3

ВК6

ВК8

ВК15

2,1

2

4

-

-

-

-

-

-

1,8

2,5

-

-

-

-

-

-

-

32

28

-

-

-

-

-

-

-

59,1

63

-

6

4

3

6

8

15

5

4,5

96

-

-

-

-

-

-

-

-

-

79

66

97

94

92

85

-

-

-

15

30

-

-

-

-

-

-

-

-

-

-

-

-

-

49-50

50-51

50

76

80

76

73

71

68


 

 При упрочнении твердых сплавов с оплавлением  поверхности (стеллит, релит) в оплавленной  зоне микротвердость повышается. Высокая  скорость кристаллизации в оплавленной  зоне приводит к образованию высокодисперсионной структуры, обладающей высокой твердостью. Микровердость релита с увеличением мощности плазменной струи снижается, т.к. увеличивается объем жидкой ванны и уменьшается скорость кристаллизации.

Установлено, что с  увеличением мощности плазменной струи микротвердость твердых сплавов возрастает.

Степень упрочнения возрастает с увеличением содержанием кобальта в сплаве и размера зерен карбидной фазы. При нагреве происходит диффузионное растворение углерода и вольфрама в расплавленной кобальтовой связке, а при охлаждении образуются мелкодисперсные карбиды в пересыщенном твердом растворе углерода в кобальте (количество вольфрама в связке также возрастает). В связи с этим, увеличение микротвердости твердых сплавов после плазменного упрочнения зависит от степени упрочнения кобальтовой прослойки.

Упрочнение твердых  сплавов сопровождается трещинообразованием, которое начинается при мощности плазменной струи, превышающей некоторую критическую величину, Р крит. Дальнейшее увеличение мощности приводит к сильному трещинообразованию. Для каждого твердого сплава существует оптимальная мощность плазменной струи, обеспечивающая бездефектное упрочнение, и критическая мощность, соответствующая появлению дефектов после упрочнения.

 

Остаточные напряжения после плазменного упрочнения твердых сплавов распределяются следующим образом: у поверхности – растягивающие напряжение, переходящие на глубине 20-30 мкм в сжимающие. Распределение остаточных напряжений по глубине и ширине упрочненной зоны зависит от скорости упрочнения, мощности плазменной струи, коэффициента перекрытия.

В проведенных исследованиях  при различных режимах упрочнения твердых сплавов у поверхности  возникало только растягивающие  напряжение. Это связано с тем, что нагрев твердого сплава до высоких температур сопровождается увеличением объема и деформацией нагретого участка. Причем объемная деформация

осуществляется в сторону  поверхности, т.к. в других направлениях она невозможна вследствие большой  массы нагретого сплава. Последующее  охлаждение не возвращает вытесненный над поверхностью материал в исходное состояние. Поэтому в зоне упрочнения возникают напряжения растяжения.

Чугуны

Наряду со сталями, чугуны с самого начала работ по поверхностному упрочнению металлов концентрированными источниками нагрева, оказались в центре внимания.

Применительно к плазменному  поверхностному упрочнению, работ, посвященных обработке чугуна, также очень немного. В работе [23] плазменному упрочнению подвергался высокопрочный чугун ВЧ-60-2. Структура упрочненного слоя состояла из игольчатого мартенсита, цементита и остаточного аустенит. Рентено-структурный анализ показал, что доля остаточного аустенита составила 45 % с содержанием углерода ( ≈1,4 мас %). Структура оплавленного участка имела диндридное строение с размером диндридов ≈ 5 баллов. Максимальная микротвердость зоны оплавления 8000-9300 Мпа.

В работе плазменное упрочнение с оплавлением проводили на высокопрочном чугуне ВЧ-42-12. Фазовый анализ зоны оплавления выявил структуру феррита, аустенита и цементита. Графит полностью или частично растворяется в зависимости от параметров упрочнения. При снижении скорости упрочнения и увеличения мощности плазменной дуги, количество растворенного в расплаве графита резко увеличивается. Глубина упрочненного слоя достигает 3 мм. А максимальная микротвердость достигает 10000 Мпа

Исследование серых  чугунов после плазменного упрочнения с оплавлением поверхности показало, что получение отбеленных слоев  без трещин возможно только при предварительном подогреве свыше 350 ° С [38]. Оплавленная зона серых чугунов с пластинчатым и шаровидным графитом имеет твердость HV 580-600 и структуру, характеризующуюся сильной негамогенностью: квазиледебурит + цементит + карбиды + мартенсит + остаточный аустенит + бейнит + сорбит + графит. Количественные соотношения структур зависят от марки серого чугуна и режимов плазменного упрочнения .

При плазменном упрочнении с оплавлением поверхности валкового  чугуна СП-62 упрочненный слой характеризуется  высокой твердостью и износостойкостью . Микротвердость в зоне оплавления составляет 6000 Мпа, в зоне закалки из твердой фазы достигает максимума 6500-7000 Мпа.

Важной особенностью упрочнения серых чугунов является небольшая глубина упрочненного слоя при обработке без оплавления поверхности, т.к. температурный интервал образования аустенита ограничен сверху температурой солидуса Тс сплава, а снизу - критической точкой Ас1, оказывается очень узким (в пределах 100-150° С). В связи с этим для получения максимальной глубины упрочнения необходимо проводить закалку с оплавлением поверхностности.

Автором были проведены  исследования влияния скорости нагрева  и мощности

Плазменной струи на степень упрочнения различных чугунов.

Различные марки серого чугуна по разному склонны к плазменному  упрочнению без оплавления поверхности.  

Легированные серые  чугуны ХНМЧ и СЧХНМД из-за низкой теплопроводности требуют значительно меньших  скоростей упрочнения и большей  мощности с (целью получения гарантированного упрочненного слоя.

 

 

 

 

Из полученных данных следует, что плазменное упрочнение в режиме дуги наиболее эффективнее, по сравнению с режимом струи, в связи с высоким КПД нагрева. Скорость обработки оказывает существенное влияние на микротвердость чугунов, как при упрочнении в режиме струи, так и при упрочнении в режиме дуги. С увеличением скорости обработки (при постоянной мощности) снижается растворимость графита в оплавленной зоне, что вызывает уменьшение микротвердости. При увеличении мощности плазменной струи (дуги)растворимость графита увеличивается и микротвердость оплавленной зоны возрастает.Однако, дальнейшее повышение мощности вызываетувеличениеобъема жидкойванны иснижение скорости охлаждения. Упрочненный поверхностный слой на чугунах по глубине не однороден. Особенностью фазового упрочненного слоя является ис.содержание остаточного аустенита 30-60% и повышенное содержание в нем. углерода 1,4 – 1,58 %, а также 20-30 % мартенсита и 20-40 % цементита. 

Предварительная обработка  чугунов (закалка, отжиг и т.д.) оказывает  сильное влияние на распределение  твердости по глубин^упрочненного слоя.

При упрочнении без оплавления поверхности в упрочненном слое образуются, в основном, аустенитно-мартенситные структуры с преобладанием мартенсита.

Анализ результатов  плазменного упрочнения чугунов  показывает, что степень их упрочнения в зоне оплавления зависит от химического состава, параметров упрочнения, температуры предварительного подогрева, исходного состояния.

Величина микротвердости в оплавленной зоне определяется, в основном, количественным соотношением цементита и аустенита, которое зависит от химического состава чугуна, степени растворения графита и скорости охлаждения жидкой ванны.

Глубина упрочненного слоя зависит от параметров режима упрочнения, исходной структуры чугуна, типа матрицы, ее дисперсности. Тип матрицы и ее дисперсность определяют скорость и полноту α→γ -превращения в чугунах.

Чем выше дисперсность ферритно-карбидной смеси, тем меньше пути диффузии углерода при превращении.

 

 Плазменное  легирование поверхностных слоев  металла.

 

Одной из разновидностей плазменного поверхностного упрочнения является легирование поверхностного слоя металла из твердой, жидкой и газовой фазы.

Плазменное  поверхностное легирование из газовой  фазы

В работе, исследован процесс плазменного поверхностного упрочнения с применением активных плазмообразующих газов на низкоуглеродистых конструкционных сталях. В общем виде механизм упрочнения можно представить следующим образом: при нагреве поверхностного слоя азотосодержащей плазменной струей (дугой) происходит насыщение металла азотом из плазмы. При последующем скоростном охлаждении образуются заключенные структуры, легированные азотом. Плазменное азотирование из газовой фазы проводится как с оплавлением поверхности так и без оплавления . Кроме азотирования возможно проводить цементацию, нитроцементацию.

Установлено, что при 60 % добавке азота к аргону начинает протекать процесс азотирования. На поверхности стали 20 образуется диффузионный слой со структурой γ1- фазы (Fe4N) и азотистой α- фазы, рис. 2.32. Однако наиболее интенсивно поверхностный слой насыщается азотом при 80-100 % содержании азота в плазмообразующем газе. В результате чего формируется слой внутреннего азотирования протяженностью 0,02-0,04 мм. Кроме стали 20, 45 исследовалась сталь 9ХФ. Обработка стали 9ХФ плазменной струей (100 % азота) приводит к перераспределению легирующих элементов V,Сr, Мn. Наиболее интенсивное перераспределение происходит в центре упрочненной зоны, так содержание марганца

повышается до 1,5% (0,45 в исходном), хрома до 0,83 % (0,6 % в исходном), ванадия до 0,31 (0,25 в исходном). Рентгенофазовый анализ показал наличие цементита, высокоазотистых нитридов Fe2N нитридов хрома при 18 % содержании остаточного аустенита.

При упрочнении плазмой сложного состава (80 % N2 +10 %Аr+ 10 % СО2) содержание углерода в поверхностной зоне карбонитридного слоя полученного на стали 20, достигает 0,3 % [24]. Толщина карбидной зоны 0,03-0,04 мм, а микротвердость 7800-8000 МПа при общей глубине упрочненного слоя 0,8 мм. По мнению в упрочненном слое также возможно образование оксикарбонитридной фазы.

При обработке стали 20 азотосодержащей  плазменной струей с оплавлением  поверхности упрочненный слой имеет  структуру ε и γ ́- фаз, соответствующих твердому раствору на базе нитридов Fе2N и Fе4N, рис.2.33. При травлении этот слой выявляется в виде светлой полоски, толщиной ≈ 0,1 мм с микротвердостью 6200-6500 Мпа. Ниже поверхностного слоя располагается диффузионная зона со структурой γ ́- фазы ( Fе4N) и α- фазы, где наблюдается провал микротвердости до 4200-3800 Мпа. Непосредственно к диффузионному слою премыкает нетравящийся слой с аномально высокой микротвердостью 12500-13000 Мпа. Это связано с увеличением содержания углерода в этом слое, по сравнению с основным металлом. Увеличение содержания углерода способствует повышению устойчивости аустенита при охлаждении и, как следствие, образование карбидного мартенсита инебольшого количества остаточного аустенита (≈7 %). Общая глубина упрочнения составила 0,8 мм., а азотированного слоя – 0,35 мм Дальнейшее увеличение мощности плазменной азотосодержащей струи при упрочнении с оплавлением поверхности вызывает интенсивное порообразование. Происходит «азотное кипение» ванны расплавленного металла, что связано с увеличением скорости поглощения азота поверхностью из плазмы (предел растворимости азота в стали наступает почти мгновенно.

Распределение содержания азота по глубине диффузионных слоев снижается  от поверхности к сердцевине основного металла.

В одной из работ определены величины и знак остаточных напряжений после плазменного азотирования стали 20,9ХФ. Максимальные сжимающие напряжение зафиксированы в зоне нитридных фаз (на глубине 30 мкм

Таким образом, использование активных плазмообразующих газов позволяет  за доли секунды проводить химико-термическую  обработку поверхностного слоя, как с оплавлением поверхности, так и без оплавления. Глубина легированного слоя в зависимости от режимов упрочнения может достигать 0,2-0,5 мм с микротвердостью на стали 20 6500-1300 Мпа, что значительно выше, чем при простой плазменной закалке.

Плазменное  легирование из твердой фазы. Цементация.

 Рассмотрены вопросы плазменной поверхностной цемента фазы. Сущность способа заключается в нанесении на поверхность металла углеродосодержащей обмазки или покрытия, которое оплавляется под воздействием плазменной струи. Под действием газодинамического напора плазменной струи происходит интенсивное перемешивание жидкого металла с углеродом и при последующей скорости кристаллизации образуется легированный углеродом слой.

В различных работах  показано, что плазменная цементация из твердой фазы возможна только с оплавлением поверхности.

В качестве основного компонента углеродосодержащих паст, обмазок, покрытий наиболее часто используют графит . При нанесении на сталь 20 углеродосодержащей пасты и последующего ее оплавления плазменной струей, в упрочненном слое образуются три зоны.

Первая зона (глубиной до100-120 мкм) является зоной легированной углеродом, с  микротвердостью 8400-9200 Мпа. Структура  не вытравливается.

Вторая зона глубиной до 50-100 мкм) является зоной закалки из твердой фазы,

Структура - мартенсит  и остаточный аустенит. Микротвердость по глубине распре делена неравномерно, т.к. в этой зоне имеются структуры  полном (ближе к легированной зоне) и неполной (нижняя граница зоны) закалки.                                                                                                  Третья зона - переходная зона, образовавшаяся при нагреве ниже точки Ас3.          Рентгеноструктурным анализом, выявлены, наряду с линиями γ - фазы и цементита линии смеси α- фазы и цементита. Средняя концентрация углерода в легированном слое составляет ≈ 3,5 %, количество остаточного аустенита (10-12 %).

При плазменной цементации возможно получить слой не только с  легированной аустенитно-мартенситной структурой., но и слой со структурой белого чугуна [26]. Структура белого чугуна была получена на стали 20. Нагрев и выдержка при температуре 500° С не выявил снижение микротвердости, которая осталась на уровне 6500-8000 Мпа.

Информация о работе Методы плазменного поверхностного упрочнения