Металлические материалы

Автор: Пользователь скрыл имя, 05 Декабря 2010 в 16:38, лекция

Краткое описание

Металлы – это кристаллические вещества, характеризующиеся рядом специфических свойств.

Файлы: 1 файл

Лекция №5-Металлы.doc

— 1.83 Мб (Скачать)

   Основными структурными составляющими железоуглеродистых сплавов, являются следующие:

      Феррит – твердый раствор углерода в a-железе с кубической объемно-центрированной кристаллической решеткой (рис. 5.3,а.). Предельная растворимость углерода в феррите при t=727 °С равна 0,02 %. С уменьшением температуры до 600 0C растворимость углерода в феррите падает до 0,01 %. Феррит весьма мягок, пластичен (НВ = 100,d=30 %), магнитен до 768 °С.

На диаграмме  состояния занимает область GPQG.

      Аустенит – твердый раствор углерода в g-железе с кубической гранецентрированной решеткой (рис. 5.3,б). Предельная растворимость углерода в аустените равна 2,14% при t=11470С. С уменьшением температуры до 7270С растворимость углерода в аустените падает до 0,81% (линия ES). Аустенит по сравнению с ферритом более тверд и пластичен (НВ=200, d=45 %), немагнитен. При дальнейшем охлаждении происходит распад твердого раствора с образованием феррита и цементита.

          Цементит – очень тверд, но хрупок (НВ=800) имеет сложную кристаллическую решетку (Рис.5.3,в). Магнитен до 2100С. Различают:

      а) Первичный цементит – Fe3CI, который выделяется при кристаллизации из жидкой фазы у всех железоуглеродистых сплавов, содержащих углерода более 4,3% (ниже линии ДС);

     б) Вторичный цементит - выделяется при вторичной кристаллизации из аустенита у всех железоуглеродистых сплавов, содержащих углерода более 0,81% в интервале температур от 11470 до 7270 С.

      в) Третичный цементит  - Fe3CIII, который выделяется при третичной кристаллизации из феррита  у всех железоуглеродистых сплавов, содержащих углерода более 0,01% в интервале температур от 7270 до 00С.

Сплавы  железа с углеродом, содержащие углерода до 0,01%, называются технически чистым железом. Структура их состоит из феррита и небольшого количества третичного цементита, располагающегося преимущественно по границам зерен феррита (область GPQ).

      Перлитэвтектоидная механическая смесь, состоящая из феррита и цементита. Образуется при распаде аустенита при температуре 7270С и содержании углерода 0,81%. Такое превращение аустенита в перлит называется эвтектоидным, а точка S  называется эвтектоидной точкой. Перлит бывает пластинчатый и зернистый. Механические свойства перлита зависят от размеров и формы цементита. Твердость – НВ=160; δ=18%.

      Ледебурит – механическая смесь, состоящая в интервале температур  
11470 … 7270С из аустенита и цементита, а ниже 7270С – аустенит, входящий в состав ледебурита – распадается на вторичный цементит и перлит. Ледебурит очень тверд (НВ=700), хрупок.

Рис 5.4. Диаграмма Железо-Углерод (ОСНОВНЫЕ СОСТАВЛЯЮЩИЕ).  
 

     В строительных конструкциях сталь подвергается действию статических и динамических нагрузок, испытывая растяжение, сжатие, изгиб, удар и поэтому необходимо регулировать свойства сталей. Различают несколько видов упрочнения стали.

5.2. режимы Термической обработки стали.

      На  аллотропных превращениях сплавов основана термическая обработка металлов. Термической обработкой металлов называется процесс, состоящий из нагрева металла до определенной температуры, выдержки при этой температуре и охлаждении с определенной скоростью. Температуры нагрева берут с диаграмм состояния сплавов. Термическая обработка стали основана на свойстве железа изменять строение кристаллической решетки при изменении температуры, а также различной растворимости углерода в кристаллических решетках разного строения. Существуют различные виды термической обработки: закалка, отпуск, отжиг, нормализация, цементация.

     Закалка стали – это процесс нагрева до температуры Тзкр+(30…50оС), выдержки и резкого охлаждения стали от температуры 723-9100С до нормальной. Закалке могут быть подвергнуты лишь стали, содержащие свыше 0,25% углерода. При резком охлаждении стали в воде при температуре 7230С произойдет перекристаллизация гранецентрированной кристаллической решетки железа в объемно-центрированную, но структура перлита не образуется, т.к. атомы углерода, из-за быстрого повышения вязкости стали, не успевают выделяться из кристаллической решетки. Полученный пересыщенный раствор углерода в объемно-центрированной кристаллической решетке называется мартенситом. Эта структура неустойчивая, неравновесная, т.к. углерод стремится выделиться из кристаллической решетки и деформирует решетку, повышая при этом прочность и твердость стали и одновременно снижая ее пластичность и ударную вязкость.

      Сталь, закаленная в воде (на мартенсит), обладает твердостью НВ=450-560 при нулевой ударной  вязкости. Закалку на мартенсит производят для повышения твердости стали, применяемой в измерительных и режущих инструментах.

      При медленном охлаждении стали: от состояния аустенита, после перекристаллизации атомы углерода успевают выделиться из объемно-центрированной кристаллической решетки железа и образовать цементит с размером зерен 10-7-10-8см. Смесь феррита с зернами цементита размером 10-7-10-8см называется троститом. Сталь со структурой тростита имеет твердость НВ=250-450. Сталь, закаленную на тростит, применяют для режущих и ударных инструментов.

     Отпуск  заключается в нагреве предварительно закаленной на мартенсит стали до определенной температуры, выдерживании при этой температуре и последующем охлаждении с заданной скоростью. В результате отпуска сталь приобретает более высокую пластичность и ударную вязкость, чем сталь с той же структурой, полученной закалкой. Различают низкий, средний и высокий отпуск.

      Низкий  отпуск производят нагревом закаленной на мартенсит стали до 180-2500С. При таком нагреве  в стали, без изменения ее структуры, исчезают напряжения, возникшие при закалке на мартенсит. Отпуск, не снижая твердости, повышает ударную вязкость стали.

      Средний отпуск осуществляются нагревом закаленной на мартенсит стали до температуры 250-4000С. В результате нагрева вязкость стали повышается, и избыточный углерод выделяется из объемно-центрированной кристаллической решетки железа. Происходит распад мартенсита. Сталь приобретает структуру тростита со всеми характерными для него свойствами. Особенностью структуры тростита, полученного в результате отпуска, является форма цементита в виде шаров-глобул. Сталь, в структуре которой цементит имеет глобулярную форму, обладает более высокой ударной вязкостью и пластичностью, чем сталь с цементитом, имеющим пластинчатую форму, которая образуется при закалке и медленном охлаждении стали.

      Высокий отпуск заключается в нагреве закаленной на мартенсит стали до температуры 500-6500С. Образующиеся при этом зерна цементита размером 10-5-10-4см имеют форму глобул.

Полученная  структура стали сорбита –  отпуска обладает более высокой  прочностью, твердостью и пластичностью, чем сталь, полученная при медленном  охлаждении после плавки или проката. Поэтому высокий отпуск называют иногда улучшением стали и применяют при термическом упрочнении арматурной стали.

  Отжиг заключается в нагреве стали до температуры, на 500С выше  
724-9100С, с последующим медленным охлаждением в печах. Существует отжиг на равновесное состояние, на мелкое зерно и т.д. Отжиг на равновесное состояние заключается  в следующем: сталь с неравновесной структурой, полученной при закалке или отпуске, нагревают до температуры выше 724-9100С и затем медленно охлаждают. Все свойства, полученные сталью при закалке или отпуске, после отжига снимаются. Отжиг на мелкое зерно заключается в следующем. Структура стали, полученной литьем или после горячей обработки, например ковки, имеет крупнозернистую структуру, которая характеризуется пониженными механическими свойствами. При нагреве стали с крупным зерном до температуры 724-9100С и последующим медленным охлаждением происходит размельчение зерна.

      Нормализация заключается в охлаждении стали от температуры 710-7230С на воздухе. Строительная сталь после нормализации обладает большей прочностью и ударной вязкостью, чем при медленном охлаждении. Это объясняется тем, что по границам зерен феррита не образуются сетки из хрупкого цементита.

      Цементация заключается в насыщении поверхностного слоя стали углеродом и последующей закалке. Цементацию применяют для повышения твердости поверхности инструментов и деталей, к которым предъявляют высокие требования по ударной вязкости.  Изделия из стали с содержанием углерода менее 0,25% нагревают до температуры  900-950оС в среде, содержащей углерод. Наиболее современный способ цементации – газовая цементация – предусматривает нагрев  детали в смеси газа метана СН4 и окиси углерода СО. При нагреве из окиси углерода и метана  выделяется углерод, который проникает в поверхностный слой детали на глубину 1-2см. Содержание углерода в поверхностных слоях стали достигает 0,8-1,2%, а основная часть деталей будет содержать углерод  менее 0,25%. Закаляя затем деталь, в поверхностных слоях ее получают структуру закаленной стали, а внутренние слои со структурой мягкой стали закалки не принимают. Таким образом, деталь будет иметь поверхность с повышенной твердостью и в то же время за счет высокой пластичности основного металла хорошо воспринимать ударные нагрузки.

    Азотирование  - насыщение поверхностного слоя стали азотом и последующая закалка стали на температуру 400-630°С, благодаря чему повышается коррозионная стойкость стали.        

  Цианирование – насыщение поверхности стали раствором  цианистых солей до температуры  950°С.

    Нитроцементация - химико-термическая обработка, заключающаяся в одновременном насыщении поверхностных слоев стальных изделий углеродом и азотом в газовой среде. Н. совмещает процессы газовой цементации и азотирования.

  

Рис 5.5. Нитроцементация в различных средах.

Рис 5.6. Нитроцементация (процедура).

Старение  проявляется в изменении ее свойств во времени без заметного изменения микроструктуры. Повышаются прочность, порога хладноломкости, снижается пластичность и ударная вязкость.  Различают два вида старения – термическое и деформационное.

     Первое протекает в результате изменения растворимости углерода и азота в зависимости от температуры.

     Второе протекает после пластической деформации при температуре ниже порога рекристаллизации.

     Определение марки стали

     Основным  испытанием при определении марки  стали, класса арматуры для железобетона является испытание на растяжение до разрыва. Для этого используют цилиндрические и плоские образцы. 

     Длинные образцы l0=10d0 (d0=20 мм), l0=11,3 (дают более точные данные о свойствах стали);

     Короткие образцы l0=5d0 (d0=20 мм), l0=5,65

Перед испытанием цилиндрические образцы  измеряют штангенциркулем или микрометром  с точностью до 0,5 мм: d0 – в двух взаимно перпендикулярных направлениях в трех местах по длине рабочей части; ширину и толщину плоских образцов – в середине и по краям расчетной длины. Вычисляют площадь S0 с точностью до 0,5 %. Испытание производят на разрывной машине .

В результате испытания получают диаграмму растяжения стали (Рис.5.7)

 

 
Рис. 8.13 Диаграмма растяжения стали:

1-низкоуглеродистая;

2-среднеуглеродистая.

 

По диаграмме  определяют основные механические показатели:

  • предел пропорциональности – это наибольшее напряжение при котором образец деформируется пропорционально возрастанию нагрузки. Участок 0-А на диаграмме – это зона упругой работы стали. Предел пропорциональности, МПа, определяют по формуле:

    где Рр – нагрузка при пределе пропорциональности, Н;

          S0 –первоначальная площадь поперечного сечения, мм2.

    - предел упругости – напряжение, при котором остаточная деформация не превышает 0,05 %.

  • предел текучести - это наименьшее напряжение, при котором образец деформируется без видимого увеличения нагрузки. Участок А-В диаграммы называют площадкой текучести. Предел текучести, МПа, вычисляют по формуле:

Информация о работе Металлические материалы