Автор: Пользователь скрыл имя, 14 Января 2012 в 14:02, реферат
Инструментальные стали предназначены для изготовления режущего, измерительного инструмента и штампов холодного и горячего деформирования. В процессе эксплуатации все виды инструмента, особенно металлорежущий и штампы, подвергаются истиранию, испытывают высокие давления, а также повышенные напряжения, чаще всего, изгиба или кручения. Для обеспечения износостойкости инструментальным сталям должна быть присуща высокая твердость, а для сохранения формы инструмента, предупреждения его поломок и выкрошивания рабочих кромок – высокая прочность при удовлетворительной вязкости
«Материал
для режущих измерительных
инструментов»
1.
Инструментальные стали
и сплавы
Инструментальные
стали предназначены для
По
предложению Ю.А. Геллера, все инструментальные
стали делят на три группы: не обладающие
теплостойкостью (углеродистые и легированные
стали, содержащие до 3-4% легирующих элементов);
полутеплостойкие (содержащие более 0,6-0,7%
С и 4-18% Сr) и теплостойкие стали (высоколегированные
стали, содержащие Cr, W, V, Mo, Co, ледебуритного
класса, получившие название быстрорежущие).
Кроме служебных свойств, для инструментальных
сталей большое значение имеют технологические
свойства: прокаливаемость, малые объемные
изменения при закалке, обрабатываемость
давлением, резанием, шлифуемость. В промышленности
применяют большое число инструментальных
сталей как углеродистых, так и легированных.
Особую группу образуют твердые сплавы,
обладающие высокой износостойкостью.
2.
Стали для измерительного
инструмента
Стали для измерительного инструмента должны обладать высокой твердостью, износостойкостью, небольшим коэффициентом теплового расширения и сохранять постоянство размеров и формы в течение длительного срока службы. Обычно применяют высокоуглеродистые (заэвтектоидные низколегированные) хромистые стали X (1,0–1,1% С и 1,3–1,6% Сr), ХГ (1,3–1,5% С, 0,45–0,7% Мn, 1,3–1,6% Сr), ХВГ, 9ХС. Измерительный инструмент из стали X и ХГ проходит закалку с возможно более низкой температуры, обычно 840–850° С, для получения минимального количества остаточного аустенита.
В закаленной высокоуглеродистой стали при нормальной комнатной температуре в течение длительного времени самопроизвольно протекает процесс старения, который заключается в частичном распаде мартенсита и превращении некоторого количества остаточного аустенита в мартенсит. Старение вызывает небольшое изменение объема в линейных размерах изделия, недопустимое для измерительных инструментов высоких классов точности.
Для предупреждения старения измерительные инструменты продолжительное время (12–60 ч) подвергают отпуску при температуре 120–140°С. Твердость после указанной обработки составляет HRC 62–64. Иногда после закалки производят обработку холодом при температуре -50¸-80°С для более полного превращения остаточного аустенита.
Измерительные скобы, шайбы, линейки и другие плоские и длинные инструменты изготовляют из листовой стали марок 15, 15Х, 20Х, 12ХН3А и для получения рабочей поверхности с высокой твердостью и износостойкостью подвергают цементации (стали 15, 20) и закалке; поверхностной закалке ТВЧ – стали 50, 55; для крупного инструмента сложной формы применяют азотируемую сталь 35ХМЮА.
3.
Углеродистые инструментальные
стали
Углеродистые стали (ГОСТ 1435) поставляют после отжига на зернистый перлит с гарантией на химический состав и твердость. Их производят качественными У, У8, У9,…, У13 и высококачественными У7А, У8А, У9А,…, У13А. Буква «У» в марке показывает, что сталь углеродистая, а цифра – среднее содержание углерода в десятых долях процента. Благодаря невысокой твердости в состоянии поставки (НВ 187–217) углеродистые стали хорошо обрабатываются резанием и деформируются, что позволяет применять накатку, насечку и другие высокопроизводительные методы изготовления инструмента.
Из-за низкой прокаливаемости (10–12 мм) углеродистые стали пригодны для мелкого инструмента или для инструмента сечением до 25 мм с незакаленной сердцевиной, в которой режущая часть приходится на поверхностный слой (метчики, развертки, напильники и т.п.). Несквозная закалка уменьшает деформации инструмента и повышает за счет вязкой сердцевины его устойчивость к ударам и вибрациям. В сечениях более 25 мм закаленный слой получается тонким и продавливается во время работы.
Стали У7¸У9 подвергают полной, а стали У10¸У13 – неполной закалке. Инструмент сечением более 15 мм охлаждают в воде или водных растворах солей и щелочей. Инструменты меньшего сечения для уменьшения деформаций и опасности растрескивания закаливают в масле или расплавах солей при 160–200° С.
Стали У7, У8, У9, обеспечивающие более высокую вязкость, применяют для инструментов, подвергающихся ударам: деревообделочного, слесарного, кузнечного, а также пуансонов, матриц и др. После закалки их отпускают при 275–350°С на троостит (HRC 48–51). Заэвтектоидные стали У10, У11, У12 используют после низкого отпуска (150–180°С) со структурой мартенсита и включениями карбидов, обеспечивающих повышенную износостойкость. Их применяют для инструментов с высокой твердостью на рабочих гранях (HRC 62–64): режущего (напильники, пилы, метчики, сверлы, резцы и т.п.), измерительного (калибры простой формы и невысоких классов точности) и небольших штампов холодной высадки и вытяжки, работающих при невысоких нагрузках.
Сталь У13 применяют для инструментов, требующих наиболее высокой твердости: шаберов, гравировального инструмента.
Высококачественные стали имеют то же назначение, что и качественные, но из-за несколько лучшей вязкости их чаще используют для инструментов с более тонкой режущей кромкой.
Недостатки углеродистых инструментальных сталей: чувствительность к перегреву и отсутствие теплостойкости. Наиболее склонны к перегреву из-за отсутствия избыточных карбидов стали У8 и У9, что существенно ограничивает их применение.
Инструмент
из углеродистых сталей отпускается
и теряет твердость при нагреве
свыше 200°С. В связи с этим он пригоден
для обработки сравнительно мягких
материалов и при небольших скоростях
резания или деформирования.
4.Штамповые
стали для деформирования
в холодном состоянии
Стали, предназначенные для штампов холодной пластической деформации, должны обладать высокой твердостью, износостойкостью и прочностью, сочетающейся с достаточной вязкостью, пластичностью. В процессе деформирования с большей скоростью штампы разогреваются до температуры 200–450°С. Поэтому стали должны быть теплостойкими и иметь минимальные объёмные изменения при закалке.
При крупных штампах необходимо обеспечить высокую прокаливаемость и небольшие объемные изменения при закалке. Если в процессе термической обработки произойдет искажение сложной фигуры штампа, то необходимо будет производить доводку штампа до требуемых размеров. Наиболее часто применяют стали, состав которых и термическая обработка приведены в табл. 1.
Таблица №1
Низколегированные стали X, 9ХС, ХВГ, ХВСГ также как и углеродистые У10, У11, У12 используют преимущественно для вытяжных, высадочных, обрезных и обрубных штампов, высадочных пуансонов которые из-за несквозной прокаливаемости имеют твердый износостойкий слой и вязкую сердцевину, позволяющую работать при небольших ударных нагрузках.
Вытяжные штампы, подвергающиеся интенсивному износу без динамических нагрузок (после неполной закалки отпускают при 150–180°С) имеют твердость HRC 58–61. Высадочные штампы и пуансоны, работающие с ударными нагрузками (подвергают отпуску при 275–325° С) имеют твердость HRC 54–56 в рабочей части.
Высокохромистые стали Х12Ф1 и Х12М относятся по структуре к ледебуритному классу (после отжига) и мартенситному (после нормализации), содержат 16–17% карбидов (Cr, Fe)7C3. Стали предназначаются для массивных штампов сложной формы, накатных роликов, валков, глазков для калибрования, вырубных, обрезных, чеканочных штампов повышенной точности, штампов выдавливания, калибровочных волочильных досок и т.д. Стали обладают высокой износостойкостью и при закалке в масле мало деформируются, что важно для штампов сложной формы. Стали закаливаются на первичную и вторичную твердость. Закалка на вторичную твердость производится с высоких температур (1110–1170°С), что приводит к сильному легированию аустенита хромом вследствие растворения карбида (Fe, Cr)7C3 и резкому снижению мартенситной точки. После закалки в структуре стали содержится до 60–80% остаточного аустенита и твердость составляет HRC 42–54. После многократного отпуска при температуре 500–580° С аустенит превращается в мартенсит и твердость возрастает до HRC 60–62. Такая обработка повышает теплостойкость, но снижает механические свойства и применяется только для небольших штампов, не испытывающих высоких нагрузок и разогревающихся при работе до высоких температур.
Молибден и ванадий в сталях Х12Ф1 и Х12М способствует сохранению мелкого зерна. Обе стали обладают высокой прокаливаемостью. При закалке на первичную твердость сталь Х12Ф1 прокаливается до 150–180 мм, а сталь Х12М – до 200 мм при охлаждении в масле. Недостаток высокохромистых сталей заключается в трудности обработки резанием в отожженном состоянии (НВ 207–269) и снижении механических свойств в случае резко выраженной карбидной неоднородности (крупные скопления карбидов, карбидная сетка, карбидная полосчатость). Меньшей карбидной неоднородностью обладает сталь Х6ВФ, которая применяется для инструментов с высокой механической прочностью и сопротивлением изнашиванию (накатные плашки, накатники для холодного накатывания зубчатых колес и т.д.). Прокаливаемость стали Х6ВФ меньше и не превышает 70–80 мм.
Для
изготовления штампов сложной формы,
пневматического инструмента, гибочных
и вытяжных штампов, ножей для резания
металлов, пуансонов и обжимных матриц,
зубил и другого инструмента, испытывающего
в работе ударные нагрузки, применяют
доэвтектоидные стали 4ХВ2С, 5ХВ2С, 6ХВ2С,
а также 4ХС и 6ХС, содержащие 1,0–1,6% Сr и
0,6–1,6% Si. Высокая вязкость сталей достигается
низким содержанием в них углерода и более
высоким отпуском после закалки.
5. Штамповые стали для деформирования в горячем состоянии
Стали для штампов, деформирующих металл в горячем состоянии (ударное нагружение), должны иметь высокие механические свойства (прочность и вязкость) при повышенных температурах и обладать окалиностойкостью и разгаростойкостью, т.е. способностью выдерживать многократные нагревы и охлаждения без образования сетки трещин (сетки разгара). Под разгаростойкостью понимают устойчивость к образованию сетки поверхностных трещин, вызываемых объемными изменениями в поверхностном слое при резкой смене температур. Это свойство обеспечивается снижением содержания углерода в стали для повышения пластичности, вязкости, а также теплопроводности, уменьшающей разогрев поверхностного слоя и термические напряжения в нем.
Кроме того, стали должны иметь высокую износостойкость и теплопроводность для лучшего отвода тепла, передаваемого обрабатываемой заготовкой.
Многие штампы имеют большие размеры, поэтому сталь для их изготовления должна обладать высокой прокаливаемостью. Это обеспечивает высокие механические свойства по всему сечению штампа. Важно, чтобы сталь не была склонна к обратимой отпускной хрупкости, так как быстрым охлаждением крупных штампов ее устранить нельзя. Состав и термическая обработка более часто применяемых штамповых сталей приведены в табл. 2.
Таблица №2
В соответствии с указанными требованиями для штампов горячей обработки давлением применяют легированные стали с 0,3–0,6% С которые после закалки подвергают отпуску при 550–680° С на троостит или троостосорбит. Среди них следует выделить несколько групп, обладающих в наибольшей степени теми свойствами, которые необходимы для определенных условий эксплуатации. Крупные ковочные (молотовые) штампы, испытывающие повышенные ударные и изгибочные нагрузки, а также инструмент ковочных машин и прессов, нагревающихся не выше 500–550° С при умеренных нагрузках, изготовляют из полутеплостойких сталей 5ХНМ и 5ХГМ (вместо никеля содержит 1,2–1,6% Мn), обладающих повышенной вязкостью.
Информация о работе Материал для режущих измерительных инструментов