Автор: Пользователь скрыл имя, 03 Февраля 2013 в 12:15, доклад
Химико-термическая обработка металлов, совокупность технологических процессов, приводящих к изменению химического состава, структуры и свойств поверхности металла без изменения состава, структуры и свойств его сердцевидных зон. Осуществляется с помощью диффузионного насыщения поверхности различными элементами при повышенных температурах. Выбор элемента (или комплекса элементов) определяется требуемыми свойствами поверхности детали.
Химико-термическая обработка
Химико-термическая
обработка металлов,
совокупность технологических
процессов, приводящих
к изменению химического
состава, структуры
и свойств поверхности
металла без изменения
состава, структуры
и свойств его
сердцевидных зон. Осуществляется
с помощью диффузионного
насыщения поверхности
различными элементами
при повышенных температурах.
Выбор элемента (или
комплекса элементов)
определяется требуемыми
свойствами поверхности
детали. Насыщение
производят углеродом (цементация),
азотом (азотирование), азотом
и углеродом (нитроцементация, цианирование
В зависимости от физико-химического состояния среды, содержащей диффундирующий элемент, различают Х.-т. о. из газовой, жидкой, твёрдой или паровой фазы (чаще применяются первые 2 метода). Х.-т. о. проводится в газовых, вакуумных или в ванных печах. Х.-т. о. подвергаются изделия из стали, чугуна, чистых металлов, сплавов на основе никеля, молибдена, вольфрама, кобальта, ниобия, меди, алюминия и др.
Физико-химические процессы, происходящие вблизи поверхности при Х.-т. о., заключаются в образовании диффундирующего элемента в атомарном состоянии вследствие химических реакций в насыщающей среде или на границе раздела среды с поверхностью металла (при насыщении из газовой или жидкой фазы), сублимации диффундирующего элемента (насыщение из паровой фазы), последующей сорбции атомов элемента поверхностью металла и их диффузии в поверхностные слои металла. Концентрация диффундирующего элемента на поверхности металла, а также структура и свойства диффузионного слоя зависят от метода Х.-т. о. Глубина диффузии элемента возрастает с повышением температуры (по экспоненциальному закону) и с увеличением продолжительности процесса (по параболическому закону). Диффузионный слой, образующийся при Х.-т. о. деталей, изменяя структурно-энергетическое состояние поверхности, оказывает положительное влияние не только на физико-химические свойства поверхности, но и на объёмные свойства деталей. Х.-т. о. позволяет сообщить изделиям повышенную износостойкость, жаростойкость, коррозионную стойкость, усталостную прочность и т.д. (см. статьи о конкретных процессах Х.-т. о.).
Лит.: Минкевич А. Н., Химико-термическая обработка металлов и сплавов, 2 изд., М., 1965; Райцес В. Б., Технология химико-термической обработки на машиностроительных заводах, М., 1965; Самсонов Г. В., Эпик А. П., Тугоплавкие покрытия, 2 изд., М., 1973; Дубинин Г. Н., О механизме формирования диффузионного слоя, в сборнике: Защитные покрытия на металлах, в. 10, К., 1976.
Г. Н. Дубинин.
Цементация (в цветной металлургии)
Цементация в цветной металлургии, гидрометаллургический процесс, основанный на вытеснении более электроположительных металлов из растворов их соединений менее электроположительными металлами, находящимися в твёрдом состоянии. Например, нормальный электрохимический потенциал меди + 0,344 в, цинка — 0,762 в; эта разность потенциалов позволяет осуществлять реакцию Cu2+раствор + Znмeталл ® Zn2+раствор + Cuмeталл.. Чем больше разность потенциалов, тем меньше остаточное содержание в растворе осаждаемого металла. Ц. широко применяют для очистки растворов от примесей и для извлечения металлов из растворов. Процесс может быть применен также для осаждения металлов из расплавленных шлаков.
Лит.: Плаксин И. Н., Юхтанов Д. М., Гидрометаллургия, М., 1949; Масленицкий И. Н., Чугаев Л. В., Металлургия благородных металлов, М., 1972; Набойченко С. С., Смирнов В. И., Гидрометаллургия меди, М., 1974.
Азотирование
Азотирование, насыщение поверхности металлических деталей азотом с целью повышения твёрдости, износоустойчивости, предела усталости и коррозионной стойкости. А. подвергают сталь, титан, некоторые сплавы, наиболее часто — легированные стали, особенно хромоалюминиевые, а также сталь, содержащую ванадий и молибден.
Азотирование стали происходит при t 500—650 °С в среде аммиака. Выше 400 °С начинается диссоциация аммиака по реакции NH3 ® 3H + N. Образовавшийся атомарный азот диффундирует в металл, образуя азотистые фазы. При температуре А. ниже 591 °С азотированный слой состоит из трёх фаз (рис.): e — нитрида Fe2N, g' — нитрида Fe4N, a — азотистого феррита, содержащего около 0,01% азота при комнатной температуре. При температуре А. 600—650° С возможно образование ещё и g-фазы, которая в результате медленного охлаждения распадается при 591°C на эвтектоид a + g1. Твёрдость азотированного слоя увеличивается до HV = 1200 (соответствует 12 Гн/м2)и сохраняется при повторных нагревах до 500—600°C, что обеспечивает высокую износоустойчивость деталей при повышенных температурах. Азотированные стали значительно превосходят по износоустойчивости цементированные и закалённые стали. А. — длительный процесс, для получения слоя толщиной 0,2—0,4 мм требуется 20—50 ч. Повышение температуры ускоряет процесс, но снижает твёрдость слоя. Для защиты мест, не подлежащих А., применяются лужение (для конструкционных сталей) и никелирование (для нержавеющих и жаропрочных сталей). Для уменьшения хрупкости слоя А. жаропрочных сталей иногда ведут в смеси аммиака и азота.
Азотирование титановых сплавов проводится при 850—950 °С в азоте высокой чистоты (А. в аммиаке не применяется из-за увеличения хрупкости металла).
При А. образуется верхний тонкий нитридный слой и твёрдый раствор азота в a-титане. Глубина слоя за 30 ч — 0,08 мм с поверхностной твёрдостью HV = 800—850 (соответствует 8—8,5 Гн/м2). Введение в сплав некоторых легирующих элементов (Al до 3%, Zr 3—5% и др.) повышает скорость диффузии азота, увеличивая глубину азотированного слоя, а хром уменьшает скорость диффузии. А. титановых сплавов в разреженном азоте [100—10 н/м2 (1—0,1 мм рт ст.)] позволяет получать более глубокий слой без хрупкой нитридной зоны.
А. широко применяют в промышленности, в том числе для деталей, работающих при t до 500—600 °С (гильз цилиндров, коленчатых валов, шестерён, золотниковых пар, деталей топливной аппаратуры и др.).
Лит.: Минкевич А. Н., Химико-термическая обработка металлов и сплавов, 2 изд., М., 1965: Гуляев А. П..Металловедение, 4 изд., М., 1966.
Д. И. Браславский.
Нитроцементация
Нитроцементация,
разновидность химико-
Лит.: Минкевич А. Н., Химико-термическая обработка металлов и сплавов, 2 изд., М., 1965.
Цианирование (в сталелитейном пр-ве)
Цианирование
стали, разновидность химико-
Лит.: Минкевич А. Н., Химико-термическая обработка металлов и сплавов, 2 изд., М., 1965; Лахтин Ю. М., Металловедение и термическая обработка металлов, 2 изд., М., 1977.
Ю. М. Лахтин.
Диффузионная металлизация
Диффузионная
металлизация, процесс,
основанный на диффузионном
насыщении поверхностных
слоёв изделий
из металлов и сплавов
различными металлами (см. Диффузия).
Д. м. проводят, чтобы
придать поверхности
металлических деталей
специальные физико-химические
и механические свойства.
В зависимости от диффундирующего
элемента различают: алитирование, диффузионное хромирование, мол
Насыщение из твёрдой фазы применяют для железа, никеля, кобальта, титана и др. металлов. В этом случае Д. м. осуществляют различными тугоплавкими металлами (Mo, W, Nb, U и др.), упругость паров которых меньше упругости паров основного металла. Процесс протекает в герметизированном контейнере, в котором обрабатываемые детали засыпаются порошкообразным металлом, в вакууме или в нейтральной среде при 1000—1500°C. Насыщение из паровой фазы применяют для сплавов на основе железа, никеля, молибдена, титана и др. металлов такими элементами, которые имеют более высокую упругость паров, чем насыщаемый металл, например Zn, Al, Cr, Ti и др. Процесс происходит в герметичных контейнерах при разрежении ~101—10-2 н/м2, или 10-1—10-4 мм рт. ст., и 850—1600°С, контактным или неконтактным способом. В первом случае паровая фаза возникает при сублимации металла и генерируется вблизи мест контактирования порошкообразного или кускообразного металла с обрабатываемой поверхностью; во втором — генерация паровой фазы происходит на некотором расстоянии от поверхности. Насыщение из газовой фазы производят при Д. м. различных металлов элементами: Al, Cr, Mn, Mo, W, Nb, Ti и др. Диффузии металла предшествуют реакции взаимодействия газообразных химических соединений диффундирующего элемента с основным металлом. Газовой фазой служат галогениды диффундирующих металлов. Газовое насыщение осуществляется в муфельных печах или в печах специальной конструкции при 700—1000°С. Газовая фаза может генерироваться на расстоянии от насыщаемой поверхности (неконтактный способ) и в зоне контакта источника активной фазы с поверхностью металла (контактный способ). Насыщение из жидкой фазы применяют при алитировании, хромировании, цинковании, меднении. Процесс протекает в печах-ваннах, в которых расплав диффундирующего металла или его соли взаимодействуют с поверхностью обрабатываемых изделий при 800—1300°С. Этим методом осуществляют также комплексную Д. м., например хромоалитирование, хромотитанирование, хромоникелирование и т.д.
Д. м. можно получать диффузионный слой толщиной от 10 мкм до 3 мм. Процессы Д. м. позволяют повысить жаростойкость сплавов (например, алитированная сталь имеет жаростойкость до 900°С), абразивную износостойкость (например, хромирование стали У12 увеличивает её износостойкость в 6 раз), сопротивление термоудару, быстрой смене температур, коррозионную стойкость и кислотоупорность и улучшить другие свойства металлов и сплавов.
Лит.: Дубинин Г. Н., Диффузионное хромирование сплавов, М., 1964; Минкевич А. Н., Химико-термическая обработка металлов и сплавов, 2 изд., М., 1965.
Г. Н. Дубинин.
Борирование
Борирование, насыщение поверхности изделий из стали и некоторых других металлов бором для повышения твёрдости (до HV = 1400 и до Нм = 2000), теплостойкости и износостойкости (особенно абразивной). Применяется главным образом электролизное Б. в расплавленной буре (деталь — катод, графит — анод). При температуре 930 °С, выдержке 6—8 ч получают борированный слой 0,15—0,25 мм (внешняя зона слоя состоит из борида FeB, а внутренняя из борида Fe2B). Реже пользуются для Б. расплавленной бурой с добавкой порошкообразного карбида бора (30—40%) или карбида кремния (30%). Иногда Б. проводят в вакуумной печи или в газовой среде (H2B6 + H2), после Б. производят поверхностную или изотермическую закалку. Б. применяют при изготовлении втулок буровых насосов, небольших гибочных формовочных и вытяжных штампов, матриц, пресс-форм, осей, пальцев, роликов и т.д.
А. Н. Минкевич.
Силицирование
Силицирование, поверхностное или объёмное насыщение материала кремнием. Производится обработкой материала в парах кремния, образующихся при высокой температуре над кремниевой засыпкой, или в газовой среде, содержащей хлорсиланы, восстанавливающиеся водородом (например, по реакции SiCI4 + 2H2 = Si + 4HC1). Применяется преимущественно как средство защиты тугоплавких металлов (W, Mo, Ta, Ti и др.) от окисления. Стойкость к окислению обусловливается образованием при С. плотных диффузионных "самозалечивающихся" силицидных покрытий (WSi2, MoSi2 и др.). Широкое применение находит силицированный графит.
Диффузия
Диффузия (от лат. diffusio — распространение, растекание), взаимное проникновение соприкасающихся веществ друг в друга вследствие теплового движения частиц вещества. Д. происходит в направлении падения концентрации вещества и ведёт к равномерному распределению вещества по всему занимаемому им объёму (к выравниванию химического потенциала вещества).