Материалы для базисов съемных зубных протезов

Автор: Пользователь скрыл имя, 21 Февраля 2012 в 10:18, реферат

Краткое описание

Сплавы на основе благородных металлов. Сплавы благородных металлов и формованные титановые базисы. Протезы из титана. Нержавеющая сталь в стоматологии. Хром, никель в стоматологии. Гибкие съемные зубные протезы из нейлона.

Файлы: 1 файл

Материалы для базисов съемных зубных протезов.doc

— 745.50 Кб (Скачать)

Плазменное напыление — это нанесение покрытий из порошковых или проволочных заготовок на основу, при этом напыляемый материал подается в высокотемпературную плазменную струю, расплавляется в ней, ускоряется и, ударяясь о подложку, прочно сцепляется с ней. Для этого используется специальное устройство – плазмотрон.

В течение 15 лет литье зубных протезов из титана пропагандируется в Японии, США и Германии, а в последнее время в и России. Разработаны различные виды оборудования для центробежного или вакуумного литья, рентгеновского контроля качества отливок, специальные огнеупорные материалы.

Перечисленные выше методы очень сложны технологически и дорогостоящи.

Выходом из этой ситуации может быть сверхпластическая формовка. Что такое «сверхпластичность»? Суть заключается в том, что при определенной температуре металл, имеющий ультрамелкое зерно, ведёт себя подобно разогретой смоле, то есть может удлиняться на сотни и тысячи процентов под действием очень малых нагрузок, что позволяет изготавливать из листа титанового сплава тонкостенные детали сложной формы. Это явление, а процесс состоит в том, что сверхпластичную листовую заготовку прижимают к матрице и под действием небольшого газового давления (максимально 7–8 атм.) она сверхпластически деформируется, за одну операцию принимая очень точную форму полости матрицы.

Зубной протез, изготовленный методом сверхпластической формовки, имеет существенные преимущества: легкость по сравнению с протезами, изготовленными из кобальтохромового или никельхромового сплавов, и высокая коррозионная стойкость и прочность. Достаточная простота изготовления протеза делает его незаменимым для массового производства в ортопедической стоматологии.

Начальные клинические этапы изготовления полного съемного протеза с титановым базисом не отличаются от традиционных при изготовлении пластмассовых протезов. Это – клиническое обследование больных, получение анатомических слепков, изготовление индивидуальной ложки, получение функционального слепка, изготовление рабочей высокопрочной модели из супергипса.

Модель из супергипса с предварительно изолированным бюгельным воском альвеолярным гребнем дублируют в огнеупорную массу.

Огнеупорные модели размещают в металлической обойме из жаропрочного сплава, которая имеет специальные

Рис. 5. Схема аппарата для сверхпластической формовки

 

 

 

 

 

 

 

 

 

 

вырезы, размеры и форма которых позволяет разместить в ней модель верхней челюсти любого пациента.

Рис. 5. Схема аппарата для сверхпластической формовки

На

керамические модели сверху накладывают лист титанового сплава толщиной 1 мм. Листовая заготовка зажимается между двух половинок формы. Полуформы образуют герметичную камеру, разделенную листом на две части, каждая из которых имеет канал сообщения с газовой системой и может быть независимо друг от друга либо вакуумирована, либо заполнена инертным газом под некоторым давлением (Рис. 5).Загерметизированные полуформы нагревают и создают перепад давления. Под листом создают разряжение (вакуум) 0,7–7,0 Па. Лист титанового сплава прогибается в сторону вакуумированной полуформы и «вдувается» в расположенную в ней керамическую модель, облегая ее рельеф. В этот период давление выдерживают по определенной программе. По завершении этой программы полуформы охлаждают.

После этого выравнивают давление в обеих полуформах до нормального и извлекают заготовку из формы. Базисы требуемого профиля вырезают по контуру, например, лучом лазера, обтачивают кромку на абразивном круге, снимают окалину, нарезают ретенционные полосы абразивным диском в седловидной части базиса до середины альвеолярного отростка и электрополируют по разработанной методике.

Ограничитель пластмассы формируется на разных уровнях титанового базиса с небной и оральной поверхности ниже вершины альвеолярного гребня на 3–4 мм, методом химического фрезерования. Вдоль линии «А» также проводится химическое фрезерование для создания ретенционного участка при фиксации базисной пластмассы.

Рис. 6. Готовые съемные протезы с титановыми базисами

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Наличие пластмассы вдоль линии «А» необходимо для возможности дальнейшей коррекции клапанной зоны.

Рис. 6. Готовые съемные протезы с титановыми базисами

В

клинике врач определяет центральное соотношение челюстей традиционными методами. Постановка зубов и примерка в полости рта не отличаются от обычных. Далее лаборатории воск заменяют на пластмассу и полируют. На этом изготовление съемного зубного протеза с титановым базисом закончено (Рис. 6).

Для сверхпластического формования используется отечественная технология, отечественная установка (оригинальная Российская запатентованная установка и методика) и отечественные листовые заготовки отечественного сплава ВТ 14.

Можно с уверенностью утверждать, что сверхпластическая формовка титановых сплавов имеет прекрасные перспективы для дальнейшего развития в нашей стране. И мы рекомендуем практическим врачам данный метод.

Созданные в последнее время новые конструкционные материалы открывают новые широкие возможности в области зубопротезирования, благодаря своим уникальным свойствам, сочетающим высокую долговечность, биоинертность и эстетичность.

 

 

Протезы из титана

 

В последнее время все чаще при обсуждении причин выбора того или иного сплава для использования в протезировании затрагиваются вопросы о его биологической совместимости с организмом человека и возможности возникновения побочных явлений.

 

 

 

Рис. 1. Аппарат для сверхпластичпой штамповки титана.

 

Хотя использование сплавов на основе драгоценных металлов имеет давнюю историю но, несмотря на их высокую стоимость, разработка и исследование ведутся по настоящее время.

 

 

Кроме сплавов на основе золота для использования в съемном протезировании предлагались серебрянопалладиевый сплав и различные биметаллические и триметаллические материалы. Имеются исследования, показывающие, что компоненты драгоценных сплавов могут вызвать явления непереносимости. Отмечено появление в слюне повышенного количества составляющих золотых сплавов (Аи, Си, Ag), что подтверждает возможность их коррозии в полости рта (Курляндский В. Ю., Гожая Л. Д., Широкова М. Д.). Серебрянопалладиевый сплав в полости рта может темнеть, в ряде случаев вызывать гальваноз (Нападов М. А.). В последние годы резко возрос интерес к использованию в стоматологии титана и его сплавов. Титановые сплавы благодаря возникающей на их поверхности окисной пленке обладают уникальной биосовместимостью. Титан имеет большую, чем нержавеющая сталь, прочность при меньшем почти в 2 раза удельном весе и высокую коррозионную стойкость. Титан оказывает усиленное сопротивление агрессивной среде, создаваемой биологическими жидкостями, в том числе и в полости рта (Рогожников Г. И. и др.). В течение 10 лет литье зубных протезов из титана пропагандируется в Японии и США, а в последнее время в Германии и России разработаны различные виды оборудования для центробежного или вакуумного литья, рентгеновского контроля качества отливок, специальные огнеупорные материалы. В настоящее время в литературе описаны три различные системы для литья титана и его сплавов: . вакуумное литье с раздельными камерами для плавления металла и литья; . вакуумное литье под давлением с единой камерой для плавления металла и литья; . центрифужное вакуумное литье. За рубежом наиболее известны литейные установки Rematitan (Dentaurum, Германия), Vacutherm 3,3 Titan (Linn, Германия), Cyclarc (Morita, Япония), Autocast HCIII (GC, Япония) и приставка литейной установки Manfredi (Италия). В нашей стране разработана установка «ВДЛСУ1». Это вакуумнодуговая литьевая установка для литья титановых протезов, предназначенная для плавки расходуемого электрода из титановых сплавов в гарниссажном тигле с последующей заливкой в формы. «ВДЛСУ1» изготовлена по аналогии с промышленной плавильнозаливочной установкой «ОКБ833» (Рогожников Г. И.). Г. И.Рогожников и ВЛ. Сочнев предложили способ штамповки базисов съемных протезов из листового титана, позволяющий улучшить их качество путем обеспечения точности прилегания к микрорельефу протезного ложа за счет упреждения пружинения, возникающего в штампуемом материале. Особенность предложенного способа заключается в том, что предварительное формообразование листовой заготовки осуществляется давлением со стороны эластичной среды (полиуретана) по модели из легкоплавкого металла, полученной по заранее преформированному оттиску, у которого небная выпуклость превышает такую же непреформированного оттиска на величину пружинения штампуемого материала. Окончательная штамповка (калибровка) базиса производится по модели из легкоплавкого металла (свинца), полученной по непреформированному оттиску. По мнению Г. И. Рогожникова и ВЛ. Сочнева, основными показаниями для применения титановых базисов съемных полных зубных протезов могут служить: . частые поломки съемных протезов; . непереносимость пластмассовых протезов; . нарушение биохимического равновесия ротовой жидкости; . глубокий прикус, осложненный уменьшением межальвеолярной высоты; . нарушение тактильных и фонетических функций; . сужение челюстей; . особенности профессий. Однако при более полном клиническом исследовании применения штампованных базисов протезов из сплавов титана марки ВТ 100 выявился ряд серьезных ограничений, делающих современные методы штампования металлических базисов мало или совершенно непригодными в ортопедической стоматологии: . базис протеза сечением менее 0,4 мм оказывается непрочным; . упрочнение базиса ребром жесткости превращает процесс в крайне сложное «рукоделие»; . холодная штамповка является довольно грубым приемом, осложненным неточностью рельефа, влекущим за собой клинические последствия. Как было указано выше, титановые сплавы повышенной прочности не подвергают холодной штамповке изза низкой технологической пластичности. Изза большого пружинения листовые детали из титановых сплавов после штамповки подвергают ручной доводке или же применяют терморихтовку (Строганов Г. Б., Новиков И. И. и др.). Производство листовых деталей сложной формы, с глубокими рифтами и малыми радиусами кривизны рельефа из сплавов типов ВТ6 и ВТ20 очень трудоемкое или вообще практически неосуществимое. Выходом из этой ситуации является применение феномена «сверхпластичности» (Бочвар А. А.). В сверхпластическом состоянии титановые сплавы деформируются под действием малых напряжений и имеют большое удлинение до разрыва, что позволяет изготавливать из листа титанового сплава тонкостенные детали сложной формы. Феномен заключается в том, что при определенной температуре металл, имеющий ультрамелкое зерно, после нагревало ½ температуры его плавления ведет себя подобно разогретой смоле, т. е. может удлиняться на сотни и тысячи процентов под действием очень малых нагрузок. Это явление было использовано для создания принципиально нового способа металлообработки, названного сверхпластической формовкой (СПФ). Сущность способа состоит в том, что сверхпластическую листовую заготовку прижимают к матрице и под действием небольшого газового давления (максимально 7—8 атм.) она сверхпластически деформируется, принимая очень точную форму полости матрицы. Особое преимущество данного способа заключается в том, что за одну операцию можно получать тонкостенные детали чрезвычайно сложной формы и с очень малыми радиусами кривизны. Именно это свойство сверхпластичности особенно важно для получения металлических базисов протеза с получением точного микрорельефа протезного ложа. Весьма ценно то, что многие титановые сплавы «природно сверхпластичны» — после серийной обработки в обычном состоянии листы из них могут быть пригодны для СПФ. Еще одним достоинством титановых сплавов является отсутствие склонности к пористости при сверхпластической деформации. Поэтому титановые сплавы — один из наиболее перспективных материалов для производства деталей способом СПФ. В России подобные работы начаты в 1992 г. Московским медицинским стоматологическим институтом совместно с Московским институтом стали и сплавов и НПК «Суперметалл». Продолжительный совместный труд ознаменовался разработкой и внедрением технологии СПФ для изготовления базисов съемных протезов. Сверхпластическая формовка открыла новые возможности для новой технологии получения высококачественных протезов, главными преимуществами которой являются, по общему мнению: . снижение трудоемкости изготовления протезов изза отсутствия многооперационных процессов, что существенно сокращает долю ручного труда врача и техников; . увеличение коэффициента использования металла, в частности титана; . эффективная обработка давлением трудно деформируемого малопластичного титана; . уменьшение мощности и металлоемкости деформирующего оборудования; . улучшение эксплуатационных характеристик деталей; . возможность переконструирования деталей усложненной формы некоторых видов зубных протезов, вследствие чего достигается снижение массы протеза; . снижение себестоимости изготовленных изделий. Клинические этапы изготовления полного съемного протеза с титановым базисом не отличаются от традиционных при изготовлении пластмассовых протезов: . клиническое обследование больного; .  получение анатомических оттисков; . изготовление   индивидуальной ложки; . получение функционального оттиска, изготовление рабочей высокопрочной модели. После этого собственно и начинаются лабораторные этапы изготовления базиса съемного протеза верхней челюсти. Необходимо подготовить рабочую гипсовую модель к дублированию. Особенностью дублирования модели при изготовлении титанового базиса является изоляция альвеолярного гребня бюгельным воском, шириной до 3 мм с каждой стороны, от середины альвеолярного отростка для создания места для пластмассы. Дублирование производится силиконовой массой. После этого из оттиска извлекают рабочую гипсовую модель и заливают подготовленной в вакуумном смесителе огнеупорной массой «Сиолит». Дублированная огнеупорной стоматологической массой модель должна быть высушена при комнатной температуре в течение 10—12 ч (за ночь). Данный режим подготовки модели перед сверхпластическим формованием является по данным проведенных исследований наиболее оптимальным и экономичным. Затем огнеупорные модели размещают в металлической обойме из жаропрочного сплава, которая имеет специальные вырезы, размеры и форма которых позволяет разместить в ней модель верхней челюсти любого пациента. По оптимальным режимам подготавливают титановый лист из титанового сплава ВТ14 с заданными свойствами, гарантирующими получение (воспроизведение) точного отпечатка поверхности со всеми особенностями и деталями микро и макрорельефа на последующих стадиях процесса, по моделям, изготовленным из огнеупорной керамики. Количество одновременно формируемых базисов может меняться от 1 до 6, в зависимости от экономической целесообразности. На керамические модели сверху накладывают лист титанового сплава толщиной 1 мм. Листовая заготовка зажимается между фланцами двух половинок формы. В нижней полуформе располагаются модели на обойме. Согласность полуформ, их сведение и разведение, создание усилия прижима по кромке листа между полуформами осуществляется прессовой системой. После зажима листа полуформы образуют герметическую камеру, разделенную листом на 2 части, каждая из которых имеет канал сообщения с газовой системой и может быть независимо друг от друга либо вакуумирована, либо заполнена инертным газом под некоторым давлением. С целью оптимизации режима формовки базисов на стадии свободной выдувки написана компьютерная программа расчета параметров формовки. В основу этой программы заложена математическая модель Джоване для формовки осесимметричного

купола. Используя компьютерную программу, можно выбирать наиболее рациональный режим формовки для каждого базиса в зависимости от его размеров. Загерметизированные полуформы помещают в печь, в которой происходит их нагрев до заданной температуры 750П00°С (рис. 1). По достижении необходимой температуры между верхней и нижней камерами создается перепад давления инертного газа, например аргона, от 0,1 до 2,0 М Па. Под листом создают разряжение (вакуум) 0,7—7,0 Па. Лист титанового сплава прогибается в сторону вакуумированной полуформы и «вдувается» в расположенную в ней керамическую модель, облегая ее рельеф. В этот период время и давление выдерживаются по определенной программе. По завершении этой программы печь снимается с оснастки для ускорения охлаждения. Герметичность полуформ поддерживается прессом до температуры, исключающей окисление извлекаемой детали.

 

 

 

 

 

 

 

Рис. 2. Титановый базис на модели.

 

Рис. 3. Готовый протезе титановым базисом.

 

После этого выравнивают давление в обеих полуформах до нормального и извлекают заготовку из формы. Базисы требуемого профиля вырезают по контуру, например, лучом лазера, обтачивают кромку на абразивном круге, снимают окалину, нарезают ретенционные полосы абразивным диском в седловидной части базиса до середины альвеолярного отростка и электрополируют по разработанной методике. Ограничитель пластмассы формируется на разных уровнях титанового базиса с небной и оральной поверхности ниже вершины альвеолярного гребня на 3—4 мм методом химического фрезерования в специальной ванне в растворе плавиковой и серной кислот. Вдоль линии «А» также проводится химическое фрезерование на ширину 2—3 мм и глубину 0,4 мм для создания ретенционного участка при фиксации базисной пластмассы. Наличие пластмассы вдоль линии «А» необходимо для возможности дальнейшей коррекции клапанной зоны. На «отпескоструенные» участки (седловидная часть базиса протеза и полосалечение больных при полной утрате зубов  шириной 2—3 мм, сформированная вдоль линии «А») наносится покрытие, например, «Таргислинк» фирмы  «ИвокларВивадент» (Лихтенштейн). Покрытие «Таргислинк» необходимо для создания дополнительной химической связи между седловидной частью титанового базиса и базисной пластмассой. Затем на седловидную часть базиса протеза и полосу, сформированную вдоль линии «А», наносится розовый светоотверждаемый опак фирмы «ИвокларВивадент» (Лихтенштейн) для маскировки цвета металла. Светоотверждение производится в аппарате «Спектромаг» в течение 8 мин. На этом лабораторные этапы изготовления титанового базиса полного съемного протеза заканчиваются, и готовый базис передается в зуботехническую лабораторию. В зуботехнической лаборатории титановый базис устанавливается на рабочей гипсовой модели (после удаления бюгельного воска с седловидной части) и прикрепляется расплавленным воском при помощи электрошпателя (рис. 2). В клинике врач определяет центральное соотношение челюстей традиционными методами. Постановка зубов и примерка в полости рта не отличается от таковых при изготовлении пластмассовых пластиночных протезов. Далее в лаборатории воск заменяют на пластмассу и полируют. На этом изготовление съемного зубного протеза с титановым базисом заканчивается (рис. 3). К сожалению, при изготовлении протезов на нижнюю челюсть металлическая часть базиса оказывается практически полностью погруженной в пластмассу, и поэтому прекрасные биологические свойства титанового сплава не реализуются и базис всего лишь играет роль обычного каркаса. Съемный зубной протез, изготовленный методом сверхпластической формовки из титанового сплава ВТ 14, обладает существенными преимуществами по сравнению с протезами, изготовленными из кобальтохромового или никельхромового сплавов. Протез из титана более легкий, имеет очень высокую коррозионную стойкость и прочность. Достаточная простота изготовления протеза делает его незаменимым для массового производства в ортопедической стоматологии.

 

http://medcentr-tyumen.ru/protezy-iz-titana.html

 

 

 

 

 

 

 

 

 

Нержавеющая сталь в стоматологии. Хром, никель в стоматологии.

 

 

Нержавеющая сталь. С 1933 г. для изготовления зубных протезов широкое распространение получила нержавеющая сталь — сплав серовато-белого с синеватым оттенком цвета. Специальный сплав нержавеющей стали для изготовления зубных протезов, кроме железа, содержит хром (18%), никель (8%) и углерод (0,1%). Этот специальный сплав нержавеющей стали имеет удельный вес 7,2—7,8, температуру плавления около 1400°.

 

В настоящее время широко применяется для изготовления кламмеров, коронок, мостовидных протезов, бюгелей, штифтов, ортодонтических аппаратов и различных шин при лечении переломов челюстей. Данный сплав нержавеющей стали (18.8.01) не намагничивается, эластичен, прочен, устойчив к коррозии, легко штампуется и вытягивается в ленту и проволоку. Твердость сплава по Бринеллю до 140.

 

Нашей промышленностью нержавеющая сталь для изготовления зубных протезов выпускается в виде полуфабрикатов — проволоки, гильз и заготовок по 30—50 г для литья. Проволока выпускается в виде заготовок для кламмеров двух видов: диаметры 1 и 1,2 мм; длина около 3 см. Проволока из нержавеющей стали выпускается также в мотках по 30—50 г различных диаметров: 0,6; 0,8; 1,0; 1,2; 1,5 и 2 мм для изготовления из нее различных штифтов, кламмеров, ортодонтических аппаратов и шин. Гильзы для изготовления из них коронок выпускаются 20 размеров, от 4 до 16 мм в диаметре; толщина стенок и дна гильз 0,22—0,30 мм.

 

Ввиду отсутствия в некоторых зуботехнических лабораториях печей для литья стали нашей промышленностью временно выпускаются из нержавеющей стали стандартные литые искусственные зубы и защитки для пластмассовых фасеток, из которых изготовляют тело мостовидных зубных протезов.

 

 

Припоем для нержавеющей стали является сплав серебра, меди, никеля, марганца, цинка, кадмия и других металлов, предложенный Д. Н. Цитриным. Температура плавления этого сплава 800°.

 

Железо. Металл синевато-серебристого цвета, удельный вес 7,86; температура плавления 1530°. Чистое железо пластично и легко штампуется; твердость по Бринеллю до 70. Железо сильно притягивается магнитом и легко намагничивается. Металл химически очень малоустойчив, так как он подвергается значительной коррозии во влажной среде и даже на воздухе. Железо в чистом виде не может быть использовано для изготовления зубных протезов, но широко применяется в сплаве с хромом и никелем в виде нержавеющей стали.

 

Хром. Металл белого цвета со слегка синеватым оттенком; удельный вес 7,2; температура плавления 1910°; химически устойчив к коррозии, очень твердый (режет стекло), но и слишком хрупкий. Для изготовления зубных протезов хром в чистом виде неприменим, нецелесообразно и хромирование зубных протезов из окисляющихся металлов, так как это не защищает, а, наоборот, увеличивает коррозию основного металла из-за возникающих микротоков. Хром, входящий в состав сплавов нержавеющей стали, кобальтхромникелевых сплавов, крампонов и др., улучшает их физические и химические свойства.

 

Никель. Металл серебристого цвета, удельный вес 8,9; температура плавления 1455°, очень стойкий к коррозии, в том числе и во влажной среде. Это очень прочный металл, хорошо штампуется и вальцуется в ленту и тонкую проволоку, твердость никеля по Бринеллю — 70. В чистом виде для изготовления зубных протезов не применяется, но входит в состав многих сплавов, в том числе нержавеющей стали, кобальтхромникелевых сплавов и др. Никель придает сплавам большую пластичность, вязкость и упругость, уменьшает усадку при литье и расширение при нагревании.

 

Никель входит в сплав некоторых припоев и в сплав для крампонов фарфоровых зубов.

Существенный недостаток нержавеющей стали — значительная усадка при литье (до 3%). Низкие качества припоя для нержавеющей стали (его легкая коррозия в полости рта) побуждают искать новые сплавы для изготовления зубных протезов. Для этой цели в настоящее время проводятся широкие испытания сплавов на основе палладия (палларгенов) с содержанием небольших количеств меди, серебра и золота.

 

Для изготовления так называемых цельнолитых бюгельных зубных протезов предложены и в настоящее время широко применяются кобальтхромникелевые сплавы, свободные от железа. А. И. Дойниковым в Институте металлургии АН СССР в 1954 г. получен сплав, состоящий из кобальта (67%), хрома (26%), молибдена (6%), никеля (0,5%), марганца (0,5%), названный нами кохромонидом. Получен и другой сплав с несколько большим содержанием никеля. Данные сплавы обладают очень высокими антикоррозионными свойствами и высокой прочностью. Удельный вес этих сплавов около 8,0; температура плавления около 1600°.

 

Для их плавки необходимо иметь специальные печи, электрические или с кислород-ацетиленовым пламенем. Эти сплавы имеют минимальную усадку при литье, но плохо паяются, и вследствие значительной упругости из данных сплавов не представляется возможным изготовлять штампованные части зубных протезов. Эти сплавы применяются широко только для изготовления очень высокоэффективных цельнолитых бюгельных зубных протезов.

 

 

Гибкие съемные зубные протезы из нейлона

Из истории протезирования: мягкие протезы

Новая эра в области неметаллических материалов, используемых в ортопедической стоматологии

 

Содержание:

современные возможности восстановления утраченных зубов;

вытеснение каучука акрилом;

недостатки акриловых протезов;

переход на термопласты;

свойства нейлона;

технические характеристики нейлона;

сравнительные характеристики Valplast-110 и Dental-D;

область применения систем на основе нейлона.

 

На сегодняшний день в стоматологии предлагаются различные виды протезирования. Отсутствующие зубы можно восстановить с помощью разнообразных материалов, многими способами, однако достаточно часто возникают ситуации, когда съемный протез является для человека единственно приемлемым вариантом. Например, когда нет опоры – задних зубов, или когда человеку по тем или иным причинам не показаны импланты.

Информация о работе Материалы для базисов съемных зубных протезов