Автор: Пользователь скрыл имя, 25 Октября 2011 в 00:51, реферат
Этот способ является частным случаем способа плоскопараллельного перемещения, когда точка фигуры описывает дугу окружности, плоскость которой также параллельна плоскости проекций. Графический алгоритм построения точек в способе вращения вокруг проецирующей прямой отличается лишь тем, что здесь траектория движения точки имеет вид окружности, а не произвольной прямой, как в плоскопараллельном проецировании.
1) Способ вращения вокруг проецирующей прямой
2) Вращение вокруг следов плоскости
3) Способ вращения вокруг линии уровня
Федеральное
государственное
высшего профессионального образования
“Ульяновское высшее авиационное училище
гражданской
авиации (институт)”
Кафедра
Общепрофессиональных дисциплин
РЕФЕРАТ
По прикладной геометрии и инженерной графике
на тему
лекции №4
Выполнил
курсант -го курса
Ульяновск 2011 г.
Содержание:
1) Способ вращения вокруг проецирующей прямой
2) Вращение вокруг следов плоскости
3)
Способ вращения вокруг линии уровня
2
Способ вращения вокруг проецирующей прямой
Этот способ является частным случаем способа плоскопараллельного перемещения, когда точка фигуры описывает дугу окружности, плоскость которой также параллельна плоскости проекций. Графический алгоритм построения точек в способе вращения вокруг проецирующей прямой отличается лишь тем, что здесь траектория движения точки имеет вид окружности, а не произвольной прямой, как в плоскопараллельном проецировании.
Способ вращения вокруг проецирующей прямой более удобен при решении некоторых задач. Найдем с применением этого метода длину отрезка AB. Отрезок AB спроецируется на П2 в натуральную величину, если он будет ей параллелен. Для этого повернем его вокруг оси, проходящей через точку B до состояния параллельности П2, при этом точка A опишет дугу в горизонтальной плоскости.
Алгоритм графических построений:
Проведем ось вращения i через точку B. Ось i перпендикулярна П2;
Повернем отрезок AB до состояния параллельности оси проекций П1П2. Где A1'B1' - новая проекция AB;
Проводим вспомогательную линию на П2. Эта линия символизирует горизонтальную плоскость, в которой поворачивалась точка A;
Проводим линию связи и находим новую проекцию A2'B2' отрезка AB на П2;
A2'B2' - натуральная величина отрезка AB.
3
Вращение вокруг следов плоскости
Совмещение является частным случаем вращения плоскости вокруг горизонтали и фронтали.
При совмещении за ось вращения принимается не произвольная горизонталь или фронталь плоскости, а ее горизонтальный или фронтальный след.
В таком случае,
в результате поворота плоскости, она
совместится либо с плоскостью Н,
если вращение осуществляется вокруг
горизонтального следа
Совмещение, так же, как и вращение вокруг горизонтали или фронтали, применяется в тех случаях, когда требуется определить истинный вид фигур, лежащих в плоскости, или построить в плоскости общего положения фигуру, форма и размеры которой заданы.
Сущность способа
совмещения можно уяснить из следующих
рассуждений. Плоскость общего положения
Р (рис. 1) вращаем вокруг следа Ph до совпадения
ее с горизонтальной плоскостью проекции.
Тогда все точки, лежащие в плоскости Р,
совместятся с плоскостью Н. При этом преобразовании
след Рh, как ось вращения, останется на
месте. Поэтому для нахождения совмещенного
положения плоскости достаточно найти
совмещенное положение только одной принадлежащей
ей точки. В качестве такой точки целесообразно
взять любую точку v', лежащую на фронтальном
следе плоскости. Точка v' при вращении
вокруг оси Ph будет перемещаться по дуге
окружности, лежащей в плоскости R, перпендикулярной
к оси вращения. Построения, которые нужно
сделать, чтобы определить совмещенное
положение точки v' с плоскостью Н при вращении
ее вокруг следа Ph, аналогичны построениям
для нахождения положения точки В0 (см.
рис. 1 ).
4
Соединяем совмещенное положение точки v'o с точкой схода следов Рх, которая, как лежащая на оси вращения, при данном преобразовании не изменит своего положения, получим совмещенное с H положение фронтального следа плоскости Рv0 (на рис. 2), а все построения приведены на эпюре.
Так как на плоскость H все элементы плоскости Р проектируются в натуральную величину, то, очевидно, расстояние от точки схода следов Рх до v' на фронтальном следе будет равно расстоянию от Рх до v'0, на совмещенном положении следа Pv0.
Поэтому положение точки V', а следовательно, и следа Pv0 можно определить, не пользуясь центром и радиусом вращения.
Для этого достаточно из точки Рх описать дугу радиусом, равным расстоянию Pxv' до ее пересечения с горизонтальным следом плоскости, в которой будет перемещаться точка v'. Через полученную точку и пройдет фронтальный след плоскости Рv0 при совмещении его с плоскостью H (рис. 2, б).
Рис. 2, б показывает совмещение плоскости Р с плоскостью проекций H.
Проследим на конкретных
примерах использование способа
совмещения для решения задач.
5
Способ вращения вокруг линии уровня
Этот способ
применяется в основном для
решения задачи преобразования
плоскости общего положения в
плоскость уровня. Суть способа
заключается в том, что
Рассмотрим
поворот точки А вокруг горизонтали
a до уровня горизонтали. Точка А движется
по дуге окружности радиуса R с центром
в точке O, принадлежащей горизонтали a.
Радиус R является гипотенузой прямоугольного
треугольника А0А1O, где один катет А1О -
горизонтальная проекция радиуса вращения,
другой - равен Dz - расстояние между точкой
A и прямой a по вертикали. А' - новое положение
точки А.
6
Алгоритм графических построений:
Через А1 проводим горизонтальную проекцию дуги по которой поворачивается точка А. Это будет прямая, перпендикулярная прямой a1;
На пересечении прямой a и проекции дуги отмечаем точку O1;
Строим прямоугольный треугольник A1A0O1. Попутно мы решили задачу нахождения расстояния между прямой и точкой. Отрезок A0O1 - расстояние от точки A до прямой a;
Обратите внимание, на то, что построения, выполняемые на верхнем демонстрационном чертеже выполняются в вертикальной плоскости, а на ортогональном чертеже мы делаем те же построения, только в горизонтальной плоскости. На результат построений такой прием не влияет;
Проводим дугу A0A1' с центром в точке O1. А1' - новая проекция точки А;
Подняв от A1'
линию проекционной связи до пересечения
с a2 находим A2
7
Информация о работе Способ вращения вокруг проецирующей прямой