Общий взгляд на математику

Автор: Пользователь скрыл имя, 14 Апреля 2012 в 16:25, курсовая работа

Краткое описание

Математика является экспериментальной наукой - частью теоретической физики и членом семейства естественных наук. Основные принципы построения и преподавания всех этих наук применимы и к математике. Искусство строгого логического рассуждения и возможность получать этим способом надежные выводы не должно оставаться привилегией Шерлока Холмса - каждый школьник должен овладеть этим умением. Умение составлять адекватные математические модели реальных ситуаций должно составлять неотъемлемую часть математического образования. Успех приносит не столько применение готовых рецептов (жестких моделей), сколько математический подход к явлениям реального мира.

Оглавление

ГЛАВА 1
История математики
1.1 Возникновение арифметики и геометрии 4
1.2 Математика в Древнем Египте 5
1.3 Вавилонская математика 7
1.4 Математика в Древнем Китае 8
1.5 Математика Древней Греции 9
1.6 Истрия математики в Индии 10
1.7 Математика средневековья 11

ГЛАВА 2
Развитие математики, как самостоятельной науки
2.1 Переломный век 12
2.2 Быстрое развитие 13
2.3 Век анализа 14
2.4 XX век: основные достижения 16

ЗАКЛЮЧЕНИЕ 19

СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ 20

Файлы: 1 файл

курсовой проект.doc

— 599.50 Кб (Скачать)

 

 

 


 

Общий взгляд на математику

курсовая работа

 

 

 

 

 

 

 

 

 

 

 

 

                                                                                             

 

 

 

СОДЕРЖАНИЕ

 

ВВЕДЕНИЕ                                                                                                                                            3

 

ГЛАВА 1

История математики                                                                                         

      1.1 Возникновение арифметики и геометрии                                                        4

       1.2  Математика в Древнем Египте                                                                                    5

       1.3 Вавилонская математика                                                                                                  7

       1.4 Математика в Древнем Китае                                                                                    8

       1.5 Математика Древней Греции                                                                                    9

       1.6 Истрия математики в Индии                                                                                     10

       1.7 Математика средневековья                                                                                                   11

                                                                                                 

ГЛАВА 2

Развитие математики, как самостоятельной науки                                              

      2.1 Переломный век                                                                                                                 12

     2.2 Быстрое развитие                                                                                                                 13                                                    

     2.3 Век анализа                                                                                                                              14

      2.4 XX век: основные достижения                                                                                    16

                                                                                                                                           

ЗАКЛЮЧЕНИЕ                                                                                                                                            19

 

СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ                                                        20

 

 

 


ВВЕДЕНИЕ

 

Математика является экспериментальной наукой - частью теоретической физики и членом семейства естественных наук. Основные принципы построения и преподавания всех этих наук применимы и к математике. Искусство строгого логического рассуждения и возможность получать этим способом надежные выводы не должно оставаться привилегией Шерлока Холмса - каждый школьник должен овладеть этим умением. Умение составлять адекватные математические модели реальных ситуаций должно составлять неотъемлемую часть математического образования. Успех приносит не столько применение готовых рецептов (жестких моделей), сколько математический подход к явлениям реального мира. При всем огромном социальном значении вычислений (и computer science), сила математики не в них, и преподавание математики не должно сводиться к вычислительным рецептам.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ГЛАВА 1

ИСТОРИЯ МАТЕМАТИКИ

1.1    Возникновение арифметики и геометрии.

 

Математика в системе человеческих знаний есть раздел, занимающийся такими понятиями, как количество, структура, соотношение и т. п. Развитие математики началось с создания практических искуств счёта и измерения линий, поверхностей и объёмов.

Понятие о натуральных числах формировалось постепенно и осложнялось неумением первобытного человека отделять числовую абстракцию от её конкретного представления. Вследствие этого счёт долгое время оставался только вещественным — использовались пальцы, камешки, пометки и т. п. Археолог Б. А. Фролов обосновывает существование счёта уже в верхнем палеолите. С распространением счёта на больши́е количества появилась идея считать не только единицами, но и, так сказать, пакетами единиц, содержащими, например, 10 объектов. Эта идея немедленно отразилась в языке, а затем и в письменности. Принцип именования или изображения числа («нумерация») может быть:

        аддитивным (один+на+дцать, XXX = 30)

        субтрактивным (IX, девя-но-сто)

        мультипликативным (пять*десят, три*ста)

Рис.1 Счётное устройство инков

Для запоминания результатов счёта использовали зарубки, узелки и т. п. С изобретением письменности стали использовать буквы или особые значки для сокращённого изображения больших чисел. При таком кодировании обычно воспроизводился тот же принцип нумерации, что и в языке.

Названия чисел от двух (zwei, two, duo, deux, dvi, два…) до десяти, а также десятков и числа 100 в индоевропейских языках сходны. Это говорит о том, что понятие абстрактного числа появилось очень давно, ещё до разделения этих языков. При образовании числительных у большинства народов число 10 занимает особое положение, так что понятно, что счёт по пальцам был широко распространён. Отсюда происходит повсеместно распространённая десятичная система счисления. Хотя есть и исключения: 80 по-французски quatre-vingt (то есть 4 двадцатки), а 90 — quatre-vingt-dix (4*20+10); это употребление восходит к счёту по пальцам рук и ног. Аналогично устроены числительные датского, осетинского, абхазского языков. Ещё яснее счёт двадцатками в грузинском языке. Шумеры и ацтеки, судя по языку, первоначально считали пятёрками.

Есть и более экзотичные варианты. Вавилоняне в научных расчётах использовали шестидесятиричную систему. А одно из папуасских племён использует двоичную[2]:

Урапун (1); Окоза (2); Окоза-Урапун (3); Окоза-Окоза (4) Окоза-Окоза-Урапун (5); Окоза-Окоза-Окоза(6); Много

Когда понятие абстрактного числа окончательно утвердилось, следующей ступенью стали операции с числами. Натуральное число — это идеализация конечного множества однородных, устойчивых и неделимых предметов (людей, овец, дней и т. п.). Для счёта важно иметь математические модели таких важнейших событий, как объединение таких множеств в одно или, наоборот, отделение части множества. Так появились операции сложения и вычитания. Умножение для натуральных чисел появилось в качестве, так сказать, пакетного сложения. Свойства и взаимосвязь операций открывались постепенно.

Другое важное практическое действие — разделение на части — со временем абстрагировалось в четвёртую арифметическую операцию деление. Делить на 10 частей сложно, поэтому десятичные дроби, удобные в сложных вычислениях, появились сравнительно поздно. Первые дроби обычно имели знаменателем 2, 3, 4, 8 или 12. Например, у римлян стандартной дробью была унция (1/12). Средневековые денежные и мерные системы несут на себе явный отпечаток древних недесятичных систем: 1 английский пенс = 1/12 шиллинга, 1 дюйм = 1/12 фута, 1 фут = 1/3 ярда и т. д.

Примерно в то же время, что и числа, человек абстрагировал плоские и пространственные формы. Они обычно получали названия схожих с ними реальных предметов: например, у греков «ромбос» означает волчок, «трапедсион» — столик (трапеция), «сфера» — мяч.[3]

Теория измерений появилась значительно позже, и нередко содержала ошибки: характерным примером является ложное учение о равенстве площадей фигур при равенстве их периметров, и обратно. Это неудивительно: измерительным инструментом служила мерная верёвка с узлами или пометками, так что измерить периметр можно было без труда, а для определения площади в общем случае ни инструментов, ни математических методов не было. Измерения служили важнейшим применением дробных чисел и источником развития их теории.

 

1.2  Математика в Древнем Египте.

 

 

Иероглифическая запись уравнения

 

Рис.2

Древнейшие древнеегипетские математические тексты относятся к началу II тысячелетия до н. э. Математика тогда использовалась в астрономии, мореплавании, землемерии, при строительстве домов, плотин, каналов и военных укреплений. Денежных расчётов, как и самих денег, в Египте не было. Египтяне писали на папирусе, который сохраняется плохо, и поэтому в настоящее время знаний о математике Египта существенно меньше, чем о математике Вавилона или Греции. Вероятно, она была развита лучше, чем можно представить, исходя из дошедших до нас документов, что подтверждается тем, что греческие математики учились у египтян.

Основные сохранившиеся источники: папирус Ахмеса, он же папирус Ринда (84 математические задачи), и московский папирус Голенищева (25 задач), оба из Среднего царства, времени расцвета древнеегипетской культуры. Авторы текста нам неизвестны.

Все задачи из папируса Ахмеса (записан ок. 1650 года до н. э.) имеют прикладной характер и связаны с практикой строительства, размежеванием земельных наделов и т. п. Задачи сгруппированы не по методам, а по тематике. По преимуществу это задачи на нахождение площадей треугольника, четырёхугольников и круга, разнообразные действия с целыми числами и аликвотными дробями, пропорциональное деление, нахождение отношений, возведение в разные степени, определение среднего арифметического, арифметические прогрессии, решение уравнений первой и второй степени с одним неизвестным.[5]

Полностью отсутствуют какие бы то ни было объяснения или доказательства. Искомый результат либо даётся прямо, либо приводится краткий алгоритм его вычисления.

Такой способ изложения, типичный для науки стран древнего Востока, наводит на мысль о том, что математика там развивалась путём индуктивных обобщений и догадок, не образующих никакой общей теории. Тем не менее, в папирусе есть целый ряд свидетельств того, что математика в Древнем Египте тех лет имела или по крайней мере начинала приобретать теоретический характер. Так, египетские математики умели извлекать корни и возводить в степень, решать уравнения, были знакомы с арифметической и геометрической прогрессией и даже владели зачатками алгебры: при решении уравнений специальный иероглиф «куча» обозначал неизвестное.

В области геометрии египтяне знали точные формулы для площади прямоугольника, треугольника и трапеции. Площадь произвольного четырёхугольника со сторонами a, b, c, d вычислялась приближённо как ; эта грубая формула даёт приемлемую точность, если фигура близка к прямоугольнику. Площадь круга вычислялась, исходя из предположения = 3,1605 (погрешность менее 1 %).

Египтяне знали точные формулы для объёма параллелепипеда и различных цилиндрических тел, а также пирамиды и усечённой пирамиды. Пусть мы имеем правильную усечённую пирамиду со стороной нижнего основания a, верхнего b и высотой h; тогда объём вычислялся по оригинальной, но точной формуле: .

О более раннем ходе развития математики в Египте сведений нет никаких. О более позднем, вплоть до эпохи эллинизма — тоже. После воцарения Птолемеев начинается чрезвычайно плодотворный синтез египетской и греческой культур.

 

 

 

 

 

 

 

 

1.3 Вавилонская математика.

 

Рис.3 Вавилонские цифры

Вавилоняне писали клинописными значками на глиняных табличках, которые в немалом количестве дошли до наших дней (более 500000, из них около 400 связаны с математикой). Поэтому мы имеем довольно полное представление о математических достижениях учёных Вавилонского государства. Отметим, что корни культуры вавилонян были в значительной степени унаследованы от шумеров клинописное письмо, счётная методика и т. п.

Вавилонская расчётная техника была намного совершеннее египетской, а круг решаемых задач существенно шире. Есть задачи на решение уравнений второй степени, геометрические прогрессии. При решении применялись пропорции, средние арифметические, проценты. Методы работы с прогрессиями были глубже, чем у египтян. Линейные и квадратные уравнения решались ещё в эпоху Хаммурапи; при этом использовалась геометрическая терминология (произведение ab называлось площадью, abc — объёмом, и т. д.). Многие значки для одночленов были шумерскими, из чего можно сделать вывод о древности этих алгоритмов; эти значки употреблялись, как буквенные обозначения неизвестных в нашей алгебре. Встречаются также кубические уравнения и системы линейных уравнений. Венцом планиметрии была теорема Пифагора, известная ещё в эпоху Хаммурапи.

Шумеры и вавилоняне использовали 60-ричную позиционную систему счисления, увековеченную в нашем делении круга на 360°, часа на 60 минут и минуты на 60 секунд. Для умножения применялся громоздкий комплект таблиц. Для вычисления квадратных корней вавилоняне изобрели итерационный процесс: новое приближение получалось из предыдущего по формуле метода Ньютона:

an + 1 = (an + N / an) / 2

В геометрии рассматривались те же фигуры, что и в Египте, плюс сегмент круга и усечённый конус. В ранних документах полагают π = 3; позже встречается приближение 25/8 = 3,125. Вавилоняне умели вычислять площади правильных многоугольников; видимо, им был знаком принцип подобия. Для площади неправильных четырёхугольников использовалась та же приближённая формула, что и в Египте: .

Всё же богатая теоретическая основа математики Вавилона не имела целостного характера и сводилась к набору разрозненных приёмов, лишённых доказательной базы.Систематический доказательный подход в математике появился только у греков

 

 

 

1.4 Математика в Древнем Китае.

 

 

                                                                  Рис.4  Китайские (вверху) и японские счёты

Цифры в древнем Китае обозначались специальными иероглифами, которые появились во II тысячелетии до н. э., и начертание их окончательно установилось к III веку до н. э. Эти иероглифы применяются и в настоящее время. Китайский способ записи чисел изначально был мультипликативным. Например, запись числа 1946, используя вместо иероглифов римские цифры, можно условно представить как 1М9С4Х6. Однако на практике расчёты выполнялись на счётной доске, где запись чисел была иной — позиционной, как в Индии, и, в отличие от вавилонян, десятичной.

Вычисления производились на специальной счётной доске суаньпань (см. на фотографии), по принципу использования аналогичной русским счётам. Нуль сначала обозначался пустым местом, специальный иероглиф появился около XII века н. э. Для запоминания таблицы умножения существовала специальная песня, которую ученики заучивали наизусть.

Наиболее содержательное математическое сочинение древнего Китая — «Математика в девяти книгах».

Китайцам было известно многое, в том числе: вся базовая арифметика (включая нахождение наибольшего общего делителя и наименьшего общего кратного), действия с дробями, пропорции, отрицательные числа, площади и объёмы основных фигур и тел, теорема Пифагора и алгоритм подбора пифагоровых троек, решение квадратных уравнений. Был даже разработан метод фан-чэн для решения систем произвольного числа линейных уравнений — аналог классического европейского метода Гаусса. Численно решались уравнения любой степени — способом тянь-юань, напоминающим метод Руффини-Горнера для нахождения корней многочлена.

 

 

 

 

 

 

 

 

 

 

 

1.5 Математика Древней Греции.

 

 

Рис.5 Рафаэль Санти. Афинская школа.

Математика в современном понимании этого слова родилась в Греции. В странах-современниках Эллады математика использовалась либо для обыденных нужд (подсчёты, измерения), либо, наоборот, для магических ритуалов, имевших целью выяснить волю богов (астрология, нумерология и т. п.). Математической теории в полном смысле этого слова не было, дело ограничивалось сводом эмпирических правил, часто неточных или даже ошибочных.

Греки подошли к делу с другой стороны.

Во-первых, пифагорейская школа выдвинула тезис «Числа правят миром».[8] Или, как сформулировали эту же мысль два тысячелетия спустя: «Природа разговаривает с нами на языке математики» (Галилей). Это означало, что истины математики есть в известном смысле истины реального бытия.

Во-вторых, для открытия таких истин пифагорейцы разработали законченную методологию. Сначала они составили список первичных, интуитивно очевидных математических истин (аксиомы, постулаты). Затем с помощью логических рассуждений (правила которых также постепенно унифицировались) из этих истин выводились новые утверждения, которые также обязаны быть истинными. Так появилась дедуктивная математика.

Греки проверили справедливость этого тезиса во многих областях: астрономия, оптика, музыка, геометрия, позже механика. Всюду были отмечены впечатляющие успехи: математическая модель обладала неоспоримой предсказательной силой.

                                                                       Рис.6 Муза геометрии (Лувр)

Попытка пифагорейцев положить в основу мировой гармонии целые числа (и их отношения) была поставлена под сомнение после того, как были обнаружены иррациональные числа. Платоновская школа (IV век до н. э.) выбрала иной, геометрический фундамент математики (Евдокс Книдский). На этом пути были достигнуты величайшие успехи античной математики (Евклид, Архимед, Аполлоний Пергский и другие).

Греческая математика впечатляет прежде всего богатством содержания. Многие учёные Нового времени отмечали, что мотивы своих открытий почерпнули у древних. Зачатки анализа заметны у Архимеда, корни алгебры — у Диофанта, аналитическая геометрия — у Аполлония и т. д. Но главное не в этом. Два достижения греческой математики далеко пережили своих творцов.

Первое — греки построили математику как целостную науку с собственной методологией, основанной на чётко сформулированных законах логики (гарантирующих истинность выводов при условии, что истинны предпосылки).

Второе — они провозгласили, что законы природы постижимы для человеческого разума, и математические модели — ключ к их познанию.

В этих двух отношениях древнегреческая математика вполне родственна современной.

 

 

1.6 Истрия математики в Индии.

 

Рис.7 Ариабхата

Индийская нумерация (способ записи чисел) изначально была изысканной. В санскрите были средства для именования чисел до 1050. Для цифр сначала использовалась сиро-финикийская система, а с VI века до н. э. — написание «брахми», с отдельными знаками для цифр 1-9. Несколько видоизменившись, эти значки стали современными цифрами, которые мы называем арабскими, а сами арабы индийскими.

Около 500 г. н. э. неизвестный нам великий индийский математик изобрёл новую систему записи чисел десятичную позиционную систему. В ней выполнение арифметических действий оказалось неизмеримо проще, чем в старых, с неуклюжими буквенными кодами, как у греков, или шестидесятиричных, как у вавилонян. В дальнейшем индийцы использовали счётные доски, приспособленные к позиционной записи. Они разработали полные алгоритмы всех арифметических операций, включая извлечение квадратных и кубических корней.

К V—VI векам относятся труды Ариабхаты, выдающегося индийского математика и астронома. В его труде «Ариабхатиам» встречается множество решений вычислительных задач. В VII веке работал другой известный индийский математик и астроном, Брахмагупта.

Наибольшего успеха средневековые индийские математики добились в области теории чисел и численных методов.

 

 

1.7 Математика средневековья.

 

В V веке наступил конец Западной Римской империи, и территория Западной Европы надолго превратилась в поле непрестанных сражений с завоевателями и разбойниками (гунны, готы, венгры, арабы, норманны и т. п.). Развитие науки прекратилось. Потребность в математике ограничивается арифметикой и расчётом календаря церковных праздников, причём арифметика изучается по учебнику Никомаха Геразского в сокращённом переводе Боэция на латинский.

Среди немногих высокообразованных людей можно отметить ирландца Бе́ду Достопочтенного (он занимался календарём, пасхалиями, хронологией, теорией счёта на пальцах) и монаха Герберта, с 999 года — римского папы под именем Сильвестр II, покровителя наук; ему приписывают авторство нескольких трудов по астрономии и математике.

Стабилизация и восстановление европейской культуры начинаются с XI века. Появляются первые университеты (Салерно, Болонья). Расширяется преподавание математики: в традиционный квадривиум входили арифметика, геометрия, астрономия и музыка.

Первое знакомство европейских учёных с античными открытиями происходило в Испании. В XII веке там переводятся (с греческого и арабского на латинский) основные труды великих греков и их исламских учеников. С XIV века главным местом научного обмена становится Византия. Особенно охотно переводиоись и издавались «Начала» Евклида; постепенно они обрастали комментариями местных геометров.

В конце XII века на базе нескольких монастырских школ был создан Парижский университет, где обучались тысячи студентов со всех концов Европы; почти одновременно возникают Оксфорд и Кембридж в Британии. Интерес к науке растёт, и одно из проявлений этого — смена числовой системы. Долгое время в Европе применялись римские цифры. В XII—XIII веках публикуются первые в Европе изложения десятичной позиционной системы записи (сначала переводы ал-Хорезми, потом собственные руководства), и начинается её применение. С XIV века индо-арабские цифры начинают вытеснять римские даже на могильных плитах. Только в астрономии ещё долго применялась шестидесятеричная вавилонская арифметика.

Первым крупным математиком средневековой Европы стал в XIII веке Леонардо Пизанский, известный под прозвищем Фибоначчи. Основной его труд: «Книга абака» (1202, второе переработанное издание 1228). Абаком Леонардо называл арифметические вычисления. Фибоначчи был хорошо знаком (по арабским переводам) с достижениями древних и систематизировал значительную их часть в своей книге. Его изложение по полноте и глубине сразу стало выше всех античных и исламских прототипов, и долгое время было непревзойдённым. Эта книга оказала огромное влияние на распространение математических знаний, популярность индийских цифр и десятичной системы в Европе.

В книгах «Арифметика» и «О данных числах» Иордана Неморария усматриваются зачатки символической алгебры, до поры до времени не отделившейся от геометрии.

В это же время Роберт Гроссетест и Роджер Бэкон призывают к созданию экспериментальной науки, которая на математическом языке сможет описать природные явления.

В XIV веке университеты появляются почти во всех крупных странах (Прага, Краков, Вена, Гейдельберг, Лейпциг, Базель и др.).

В конце XIV века жил Никола Орем, или Николай Орезмский, математик, физик, астроном, философ, епископ. Впервые в Европе провозгласил и обосновал, хотя и очень осторожно, вращение Земли (но в конце книги предусмотрительно отверг эту идею). Ввёл изображение зависимости с помощью графика, исследовал сходимость рядов. В алгебраических трудах он рассматривал дробные показатели степени.

Видный немецкий математик и астроном XV века Иоганн Мюллер стал широко известен под именем Региомонтан — латинизированным названием его родного города Кёнигсберг. Он напечатал первый в Европе труд, специально посвящённый тригонометрии. По сравнению с арабскими источниками нового немного, но надо особо отметить систематичность и полноту изложения.

Лука Пачоли, крупнейший алгебраист XV века, друг Леонардо да Винчи, дал ясный (хотя не слишком удобный) набросок алгебраической символики.

 

ГЛАВА 2

РАЗВИТИЕ МАТЕМАТИКИ, КАК САМОСТОЯТЕЛЬНОЙ НАУКИ

 

2.1 Переломный век.

XVI век стал переломным для европейской математики. Полностью усвоив достижения предшественников, она несколькими мощными рывками вырвалась далеко вперёд.

Первым крупным достижением стало открытие общего метода решения уравнений третьей и четвёртой степени. Итальянские математики дель Ферро, Тарталья и Феррари решили проблему, с которой несколько веков не могли справиться лучшие математики мира.[L 9] При этом обнаружилось, что в решении иногда появлялись «невозможные» корни из отрицательных чисел. После анализа ситуации европейские математики назвали эти корни «мнимыми числами» и выработали правила обращения с ними, приводящие к правильному результату. Так в математику впервые вошли комплексные числа.

Важнейший шаг к новой математике сделал француз Франсуа Виет. Он окончательно сформулировал символический метаязык арифметики — буквенную алгебру.[10] С её появлением открылась возможность проведения исследований невиданной ранее глубины и общности. В своей книге «Введение в аналитическое искусство» Виет показал примеры мощи нового метода, найдя знаменитые формулы Виета. Символика Виета ещё не была похожа на принятую ныне, современный её вариант позднее предложил Декарт.[11]

Третье великое открытие XVI века — изобретение логарифмов (Джон Непер). Сложные расчёты упростились во много раз, а математика получила новую неклассическую функцию с широкой областью применения.

В 1585 году фламандец Симон Стевин издаёт книгу «Десятая» о правилах действий с десятичными дробями, после чего десятичная система одерживает окончательную победу и в области дробных чисел. Стевин также провозгласил полное равноправие рациональных и иррациональных чисел, а также (с некоторыми оговорками) и отрицательных чисел.[13]

Одновременно растёт престиж математики, в изобилии появляется множество практических задач, требующих решения — в артиллерии, мореплавании, строительстве, промышленности, гидравлике, астрономии, картографии, оптике и др. И, в отличие от античности, учёные Возрождения не чурались таких задач. Чистых математиков-теоретиков фактически не было. Появляются первые Академии наук. В XVI—XVII веках роль университетской науки падает, появляется множество учёных-непрофессионалов: Стевин — военный инженер, Виет и Ферма — юристы, Дезарг и Рен — архитекторы, Лейбниц — чиновник, Непер, Декарт, Паскаль — частные лица.

 

 

2.2 Быстрое развитие.

 

В XVII веке быстрое развитие математики продолжается, и к концу века облик науки коренным образом меняется.

Рене Декарт исправляет стратегическую ошибку античных математиков и восстанавливает алгебраическое понимание числа (вместо геометрического). Более того, он указывает способ перевода геометрических предложений на алгебраический язык (с помощью системы координат), после чего исследование становится намного эффективнее. Так родилась аналитическая геометрия. Декарт рассмотрел множество примеров, иллюстрирующих огромную мощь нового метода, и получил немало результатов, неизвестных древним. Особо следует отметить разработанную им математическую символику, близкую к современной.

Аналитический метод Декарта немедленно взяли на вооружение Валлис, Ферма и многие другие видные математики.[16]

Пьер Ферма, Гюйгенс и Якоб Бернулли открывают новый раздел математики, которому суждено большое будущее теорию вероятностей. Якоб Бернулли формулирует первую версию закона больших чисел.


 

 

Рис.8  Сэр Исаак Ньютон

И, наконец, появляется не очень чёткая, но глубокая идея — анализ произвольных гладких кривых с помощью разложения их на бесконечно малые отрезки прямых. Первой реализацией этой идеи был во многом несовершенный метод неделимых (Кеплер[18], Кавальери[19], Ферма)[20], и уже с его помощью было сделано множество новых открытий. В конце XVII века идея неделимых была существенно расширена Ньютоном[21] и Лейбницем[22], и появился исключительно могучий инструмент исследования математический анализ. Это математическое направление стало основным в следующем, XVIII веке.

Теория отрицательных чисел всё ещё находилась в стадии становления. Оживлённо обсуждалась, например, странная пропорция 1:(-1) = (-1):1 — в ней первый член слева больше второго, а справа — наоборот, и получается, что большее равно меньшему («парадокс Арно»).[23]

Комплексные числа считались фиктивными, правила действий с ними были окончательно не отработаны. Более того, было неясно, все ли «мнимые числа» можно записать в виде a+bi или, скажем, при извлечении некоторого корня могут появиться мнимости, не сводящиеся к этой форме (так полагал даже Лейбниц). Только в XVIII веке Даламбер и Эйлер установили, что комплексные числа замкнуты относительно всех операций, включая извлечение корня любой степени.

Во второй половине XVII века появляется научная периодика, ещё не специализированная по видам наук. Начало положили Лондон и Париж, но особо важную роль сыграл журнал Acta Eruditorum (1682, Лейпциг, на латинском языке). Французская Академия наук издаёт свои записки (Memoires) с 1699 года. Выходили эти журналы редко, и переписка продолжала оставаться незаменимым средством распространения информации.

 

2.3 Век анализа

XVIII век в математике можно кратко охарактеризовать как век анализа, который стал главным объектом приложения усилий математиков. Способствуя бурному развитию естественных наук, анализ, в свою очередь, прогрессировал сам, получая от них всё более и более сложные задачи. На стыке этого обмена идеями родилась математическая физика.

Критика метода бесконечно малых за плохую обоснованность быстро смолкла под давлением триумфальных успехов нового подхода. В науке, благодаря Ньютону, царила механика — все прочие взаимодействия считались вторичными, следствиями механических процессов. Развитие анализа и механики происходили в тесном переплетении; первым это объединение осуществил Эйлер, который убрал из ньютоновской механики архаичные конструкции и подвёл под динамику аналитический фундамент (1736). С этого момента механика стала прикладным разделом анализа. Процесс завершил Лагранж, чья «Аналитическая механика»[24] демонстративно не содержит ни одного чертежа. Одновременно анализ алгебраизировался и окончательно (начиная с Эйлера) отделился от геометрии и механики.

Главным методом познания природы становится составление и решение дифференциальных уравнений. После динамики точки настал черёд динамики твёрдого тела, затем — жидкости и газа. Прогрессу в этой области немало способствовал спор о струне, в котором участвовали ведущие математики Европы.

Теория тяготения Ньютона поначалу встречала трудности в описании движения Луны, однако работы Клеро, Эйлера и Лапласа[25] ясно показали, что никаких дополнительных сил, кроме ньютоновских, в небесной механике нет.

Анализ распространяется на комплексную область. Аналитическое продолжение большинства функций проблем не вызвало, и были обнаружены неожиданные связи между стандартными функциями (формула Эйлера).[26] Затруднения встретились для комплексного логарифма, но Эйлер их успешно преодолел. Были введены конформные отображения, высказана гипотеза о единственности аналитического продолжения. Комплексные функции нашли даже применение в прикладных науках — гидродинамике, теории колебаний (Даламбер, Эйлер).

 

Рис.9 Жозеф Луи Лагранж

Далеко продвинулись теория и техника интегрирования. Входят в широкое употребление кратные интегралы (Эйлер, Лагранж), причём не только в декартовых координатах. Появляются и поверхностные интегралы (Лагранж, Гаусс). Усиленно разрабатывается теория дифференциальных уравнений, как обыкновенных, так и в частных производных. Математики проявляют исключительную изобретательность при решении дифференциальных уравнений в частных производных, для каждой задачи изобретая свои методы решения. Сформировалось понятие краевой задачи, возникли первые методы её решения.

В конце XVIII века было положено начало общей теории потенциала (Лагранж, Лаплас, Лежандр). Для тяготения потенциал ввёл Лагранж (1773, термин предложил Грин в 1828 году). Вскоре Лаплас обнаружил связь потенциала с уравнением Лапласа и ввёл важный класс ортогональных сферических функций.

Возникают многообещающее вариационное исчисление и вариационные принципы физики (Эйлер, Лагранж).

 

Рис. 10 Леонард Эйлер на советской почтовой марке (1957)

Лидером математиков XVIII века был Эйлер, чей исключительный талант наложил отпечаток на все основные математические достижения столетия.[27] Именно он сделал из анализа совершенный инструмент исследования. Эйлер существенно обогатил ассортимент функций, разработал технику интегрирования, далеко продвинул практически все области математики. Наряду с Мопертюи он сформулировал принцип наименьшего действия как высший и универсальный закон природы.

В теории чисел окончательно легализуются мнимые числа, хотя полная теория их ещё не создана. Доказана (ещё не вполне строго) основная теорема алгебры. Эйлер разработал теорию делимости целых чисел и теорию сравнений (вычетов), завершённую Гауссом. Эйлер ввёл понятие первообразного корня, доказал его существование для любого простого числа и нашёл количество первообразных корней, открыл квадратичный закон взаимности. Он и Лагранж опубликовали общую теорию цепных дробей, и с их помощью решили немало задач диофантова анализа. Эйлер также обнаружил, что в ряде задач теории чисел можно применить аналитические методы.

 

2.4 XX век: основные достижения.

Престиж профессии математика стал в XX столетии заметно выше. Математика развивалась экспоненциально, и невозможно сколько-нибудь полно перечислить сделанные открытия, но некоторые наиболее серьёзные достижения упомянуты ниже.

 

Рис. 11 Давид Гильберт

 

В 1900 году Давид Гильберт на Международном конгрессе математиков представил список из 23 нерешённых математических проблем. Эти проблемы охватили множество областей математики и сформировали центр приложения усилий математиков XX столетия. Сегодня десять проблем из списка решены, семь частично решены, и две проблемы всё ещё открыты. Оставшиеся четыре сформулированы слишком обобщённо, чтобы имело смысл говорить о их решении.

В школе Гильберта появился функциональный анализ, вскоре нашедший непосредственное применение в квантовой физике.

В начале века Эмми Нётер и Ван дер Варден завершили построение основ абстрактной алгебры, структуры которой пронизывают всю математику. Лебег и Борель обобщили жорданову теорию меры; на её основе был построен интеграл Лебега.

Общая топология стремительно развивается и находит применение в самых различных областях математики.

Герман Минковский в 1907 году разработал геометрическую модель кинематики специальной теории относительности, позднее послужившую основой для Общей теории относительности.

Рис. 12 Сриниваса Айенгор Рамануджан

В 1910-х годах Рамануджан сформулировал более чем 3000 теорем, включая свойства функции разбиения числа и её асимптотических оценок. Он также получил важные результаты в области исследования гамма-функции, модулярных форм, расходящихся рядов, гипергеометрических рядов и теории простых чисел.

В 1931 году Курт Гёдель опубликовал две свои теоремы о неполноте, которые установили ограниченность математической логики. Это положило конец замыслу Давида Гильберта создать полную и непротиворечивую систему оснований математики. Несколько ранее (начиная с 1915 года) исследования Лёвенгейма и Сколема обнаружили ещё один обескураживающий факт: никакая аксиоматическая система не может быть категорична. Другими словами, как бы тщательно мы ни формулировали систему аксиом, всегда найдётся интерпретация, совершенно не похожая на ту, ради которой эта система проектировалась. Это обстоятельство также подрывает веру в универсальность аксиоматического подхода.

Капитальные результаты получены в теория алгоритмов. Было доказано, что теорема может быть правильной, но алгоритмически неподдающейся (точнее, нет разрешающей процедуры, Чёрч, 1936).

В 1933 году А. Н. Колмогоров завершил (общепризнанную теперь) аксиоматику теории вероятностей.

Рис. 13 Абрахам Робинсон

 

В 1960-х годах Абрахам Робинсон опубликовал изложение нестандартного анализа — альтернативного подхода к обоснованию математического анализа на основе актуальных бесконечно малых.

В 1963 году Пол Коэн доказал, что континуум-гипотеза Кантора недоказуема (в обычной аксиоматике теории множеств).

Массовый интерес вызвали фракталы, открытые Бенуа Мандельбротом (1975).

Интенсивно развивается теория многомерных многообразий, стимулируемая потребностями физики (ОТО, теория струн и др.).

Рис. 14 Норберт Винер

 

Во второй половине XX века, в связи с появлением компьютеров, произошла существенная переориентация математических усилий. Значительно выросла роль таких разделов, как численные методы, теория оптимизации, общение с очень большими базами данных, имитация искусственного интеллекта, кодирование звуковых и видеоданных и т. п. Возникли новые науки кибернетика и информатика.

Ряд старых проблем получили решение при использовании современных методов. Вольфганг Хакен и Кеннет Апель с помощью компьютера решили проблему четырёх красок (1976). Эндрю Уайлс, работая один в своём офисе в течение многих лет, доказал последнюю теорему Ферма в 1995 году.

Среди наиболее выдающихся математиков XX века можно назвать (помимо уже упомянутых) такие имена:

                   Жак Адамар теория чисел.

                   Павел Сергеевич Александров топология.

                   Стефан Банах функциональный анализ, теория множеств.

                   Лёйтзен Эгберт Ян Брауэр анализ, топология, теория множеств, философия математики.

                   Норберт Винер — создатель кибернетики.

                   Израиль Моисеевич Гельфанд функциональный анализ, топология, алгебра, группы Ли, математическая физика и др.

                   Жан Дьёдонне функциональный анализ, группы Ли, топология, алгебраическая геометрия.

                   Герман Вейль алгебра, анализ, теория чисел, математическая логика, математическая физика и др.

                   Анри Картан анализ, топология.

                   Джон фон Нейман математическая логика и теория компьютеров, математическая физика, теория множеств, информатика, экономика, теория игр и др.

                   Альфред Тарский математическая логика.

                   Альфред Норт Уайтхед математическая логика.

                   Феликс Хаусдорф топология, теория множеств, функциональный анализ, теория чисел.

                   Александр Яковлевич Хинчин теория вероятностей.

                   Алонзо Чёрч информатика, математическая логика.

                   Клод Элвуд Шеннон информатика, кибернетика.

                   Эрнст Цермело математическая логика, теория множеств.

Особенное развитие в XX веке получили новые области математики; кроме компьютерных потребностей, это связано с запросами теории управления, квантовой физики и других прикладных дисциплин.

                   Различные разделы дискретной математики.

                   Информатика и кибернетика.

                   Теория алгоритмов.

                   Теория графов.

                   Теория групп Ли и других абстрактных структур.

                   Теория игр.

                   Теория информации.

                   Теория оптимизации.

                   Теория компьютерного моделирования.

                   Теория случайных процессов.

                   Топология.

                   Функциональный анализ.

 

 

 

 

 

 

 

 

 

 

 

ЗАКЛЮЧЕНИЕ

Если говорить о современном историческом этапе развития математического познания, то он идет в русле дальнейшего освоения философских категорий: теория вероятностей “осваивает” категории возможного и случайного; топология - категории отношения и непрерывности; теория катастроф - категорию скачка; теория групп - категории симметрии и гармонии и т.д.

В математическом мышлении выражены основные закономерности построения сходных по форме логических связей. С его помощью осуществляется переход от единичного (скажем, от определенных математических методов - аксиоматического, алгоритмического, конструктивного, теоретико-множественного и других) к особенному и общему, к обобщенным дедуктивным построениям. Единство методов и предмета математики определяет специфику математического мышления, позволяет говорить об особом математическом языке, в котором не только отражается действительность, но и синтезируется, обобщается, прогнозируется научное знание. Могущество и красота математической мысли - в предельной четкости её логики, изяществе конструкций, искусном построении абстракций.

Принципиально новые возможности мыслительной деятельности открылись с изобретением ЭВМ, с созданием машинной математики. В языке математики произошли существенные изменения. Если язык классической вычислительной математики состоял из формул алгебры, геометрии и анализа, ориентировался на описание непрерывных процессов природы, изучаемых прежде всего в механике, астрономии, физике, то современный её язык - это язык алгоритмов и программ, включающий старый язык формул в качестве частного случая.

Язык современной вычислительной математики становится все более универсальным, способным описывать сложные (многопараметрические) системы. Вместе с тем хочется подчеркнуть, что каким бы совершенным ни был математический язык, усиленный электронно-вычислительной техникой, он не порывает связей с многообразным “живым”, естественным языком. Мало того, разговорный язык является базой языка искусственного. В этом отношении представляет интерес недавнее открытие ученых. Речь идет о том, что древний язык индейцев аймара, на котором говорят примерно 2,5 миллиона человек в Боливии и Перу, оказался в высшей степени удобным для компьютерной техники. Еще в 1610 г. итальянский миссионер-иезуит Людовико Бертони, составивший первый словарь аймара, отмечал гениальность его создателей, добившихся высокой логической чистоты. В аймара, например, не существует неправильных глаголов и никаких исключений из немногих четких грамматических правил. Эти особенности языка аймара позволили боливийскому математику Айвану Гусману де Рохас создать систему синхронного компьютерного перевода с любого из пяти заложенных в программу европейских языков, “мостиком” между которыми служит язык аймара. ЭВМ “Аймара”, созданная боливийским ученым, получила высокую оценку специалистов. Резюмируя эту часть вопроса о сущности математического стиля мышления, следует отметить, что его основным содержанием является понимание природы

 

    

 

 

 

 

СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ

 

1. Гильде В. Зеркальный мир. - М., Мир, 2007. - 255 с.

2. Гнеденко Б.В. Математика и математическое образование в современном мире. - М., Просвещение, 2005. - 177 с.

3. Информационная безопасность. Под ред. М.А.Вуса. - С-Пб.: Изд-во СПбГУ, 2006. - 201 с.

4. История математики. Под ред. А.П.Юшкевича. Т. 1-3. - М., Наука, 2007. - 512 с.

5. Колмогоров А.Н. Математика в ее историческом развитии. - М., Наука, 2005. - 325 с.

6. Курант Р., Роббинс Г. Что такое математика? - М., Просвещение, 2007. - 190 с.

7. Пойа Д. Математика и правдоподобные рассуждения. - М., Наука, 2005. - 178 с.

8. Пойа Д. Математическое открытие. - М., Наука, 2007. - 213 с.

9. Стройк Д.Я. Краткий очерк истории математики. - М., Физматлит, 2007. - 346 с.

10. Фор Р., Кофман А., Дени-Папен М. Современная математика. - М., Мир, 2006. - 311 с.

11. Стили в математике: социокультурная философия математики.//Под ред. А.Г. Барабашева. - СПб., РХГИ. 2008. - 244

 

 

 

 

 

 

 

 

 

2

 

Информация о работе Общий взгляд на математику