Корреляционный анализ

Автор: Пользователь скрыл имя, 08 Апреля 2014 в 15:03, контрольная работа

Краткое описание

Уравнение парной регрессии.
Использование графического метода.
Этот метод применяют для наглядного изображения формы связи между изучаемыми экономическими показателями. Для этого в прямоугольной системе координат строят график, по оси ординат откладывают индивидуальные значения результативного признака Y, а по оси абсцисс - индивидуальные значения факторного признака X.

Файлы: 1 файл

Задача 3 вариант 7 тоервер.doc

— 51.00 Кб (Скачать)

 

Корреляционный анализ.

 

Уравнение парной регрессии.

Использование графического метода.

Этот метод применяют для наглядного изображения формы связи между изучаемыми экономическими показателями. Для этого в прямоугольной системе координат строят график, по оси ординат откладывают индивидуальные значения результативного признака Y, а по оси абсцисс - индивидуальные значения факторного признака X.

Совокупность точек результативного и факторного признаков называется полем корреляции.

На основании поля корреляции можно выдвинуть гипотезу (для генеральной совокупности) о том, что связь между всеми возможными значениями X и Y носит линейный характер.

Линейное уравнение регрессии имеет вид y = bx + a + ε

Здесь ε - случайная ошибка (отклонение, возмущение).

Причины существования случайной ошибки:

1. Невключение в регрессионную  модель значимых объясняющих  переменных;

2. Агрегирование переменных. Например, функция суммарного потребления  – это попытка общего выражения  совокупности решений отдельных  индивидов о расходах. Это лишь аппроксимация отдельных соотношений, которые имеют разные параметры.

3. Неправильное описание  структуры модели;

4. Неправильная функциональная  спецификация;

5. Ошибки измерения.

Так как отклонения εi  для каждого конкретного наблюдения i – случайны и их значения в выборке неизвестны, то:

1) по наблюдениям xi и yi можно получить только оценки параметров α и β

2) Оценками параметров  α и β регрессионной модели  являются соответственно величины  а и b, которые носят случайный  характер, т.к. соответствуют случайной выборке;

Оценочное уравнение регрессии (построенное по выборочным данным) будет иметь вид y = bx + a + ε, где ei – наблюдаемые значения (оценки) ошибок εi, а и b соответственно оценки параметров α и β регрессионной модели, которые следует найти.

Для оценки параметров α и β - используют МНК (метод наименьших квадратов).

Метод наименьших квадратов дает наилучшие (состоятельные, эффективные и несмещенные) оценки параметров уравнения регрессии. Но только в том случае, если выполняются определенные предпосылки относительно случайного члена (ε) и независимой переменной (x).

Формально критерий МНК можно записать так:

S = ∑(yi - y*i)2 → min

Система нормальных уравнений.

a•n + b∑x = ∑y

a∑x + b∑x2 = ∑y•x

Для наших данных система уравнений имеет вид

6a + 114 b = 26

114 a + 2254 b  = 538

Из первого уравнения выражаем а и подставим во второе уравнение:

Получаем эмпирические коэффициенты регрессии: b = 0.5, a = -5.1667

Уравнение регрессии (эмпирическое уравнение регрессии):

y = 0.5 x - 5.1667

Эмпирические коэффициенты регрессии a и b являются лишь оценками теоретических коэффициентов βi, а само уравнение отражает лишь общую тенденцию в поведении рассматриваемых переменных.

Для расчета параметров регрессии построим расчетную таблицу (табл. 1)

 

 

x

y

x2

y2

x • y

14

1

196

1

14

15

3

225

9

45

18

4

324

16

72

20

5

400

25

100

22

6

484

36

132

25

7

625

49

175

114

26

2254

136

538


 

 

1. Параметры уравнения регрессии.

Выборочные средние.

 

 

 

Выборочные дисперсии:

 

 

Среднеквадратическое отклонение

 

 

1.1. Коэффициент корреляции

Ковариация.

 

Рассчитываем показатель тесноты связи. Таким показателем является выборочный линейный коэффициент корреляции, который рассчитывается по формуле:

 

Линейный коэффициент корреляции принимает значения от –1 до +1.

Связи между признаками могут быть слабыми и сильными (тесными). Их критерии оцениваются по шкале Чеддока:

0.1 < rxy < 0.3: слабая;

0.3 < rxy < 0.5: умеренная;

0.5 < rxy < 0.7: заметная;

0.7 < rxy < 0.9: высокая;

0.9 < rxy < 1: весьма высокая;

В нашем примере связь между признаком Y фактором X  весьма высокая и прямая.

Кроме того, коэффициент линейной парной корреляции может быть определен через коэффициент регрессии b:

 

1.2. Уравнение регрессии (оценка уравнения регрессии).

 

Линейное уравнение регрессии имеет вид y = 0.5 x -5.17

Коэффициентам уравнения линейной регрессии можно придать экономический смысл.

Коэффициент регрессии b = 0.5 показывает среднее изменение результативного показателя (в единицах измерения у) с повышением или понижением величины фактора х на единицу его измерения. В данном примере с увеличением на 1 единицу y повышается в среднем на 0.5.

Коэффициент a = -5.17 формально показывает прогнозируемый уровень у, но только в том случае, если х=0 находится близко с выборочными значениями.

Но если х=0 находится далеко от выборочных значений х, то буквальная интерпретация может привести к неверным результатам, и даже если линия регрессии довольно точно описывает значения наблюдаемой выборки, нет гарантий, что также будет при экстраполяции влево или вправо.

Подставив в уравнение регрессии соответствующие значения х, можно определить выровненные (предсказанные) значения результативного показателя y(x) для каждого наблюдения.

Связь между у и х определяет знак коэффициента регрессии b (если > 0 – прямая связь, иначе - обратная). В нашем примере связь прямая.

Для оценки качества параметров регрессии построим расчетную таблицу (табл. 2)

2. Оценка параметров уравнения  регрессии.

2.1. Значимость коэффициента корреляции.

Для того чтобы при уровне значимости α проверить нулевую гипотезу о равенстве нулю генерального коэффициента корреляции нормальной двумерной случайной величины при конкурирующей гипотезе H1 ≠ 0, надо вычислить наблюдаемое значение критерия

 

и по таблице критических точек распределения Стьюдента, по заданному уровню значимости α и числу степеней свободы k = n - 2 найти критическую точку tкрит двусторонней критической области. Если tнабл < tкрит оснований отвергнуть нулевую гипотезу нет. Если |tнабл| > tкрит — нулевую гипотезу отвергают.

 

По таблице Стьюдента с уровнем значимости α=0.05 и степенями свободы k=4 находим tкрит:

tкрит (n-m-1;α/2) = (4;0.025) = 2.776

где m = 1 - количество объясняющих переменных.

Если tнабл > tкритич, то полученное значение коэффициента корреляции признается значимым (нулевая гипотеза, утверждающая равенство нулю коэффициента корреляции, отвергается).

Поскольку tнабл > tкрит, то отклоняем гипотезу о равенстве 0 коэффициента корреляции. Другими словами, коэффициент корреляции статистически - значим

В парной линейной регрессии t2r = t2b и тогда проверка гипотез о значимости коэффициентов регрессии и корреляции равносильна проверке гипотезы о существенности линейного уравнения регрессии.

2.2. Интервальная оценка для коэффициента  корреляции (доверительный интервал).

 

Доверительный интервал для коэффициента корреляции

 

r(0.91;1.04)

 

Решение было получено и оформлено с помощью сервиса:

Уравнение парной линейной регрессии

Вместе с этой задачей решают также:

Уравнение множественной регрессии

Коэффициент корреляции Спирмена

Выявление тренда методом аналитического выравнивания

Показатели вариации

Показатели динамики

Copyright © Semestr.RU


Информация о работе Корреляционный анализ