Автор: Пользователь скрыл имя, 07 Февраля 2013 в 11:52, реферат
Понятие интеграл непосредственно связано с интегральным исчислением – разделом математики, занимающимся изучением интегралов, их свойств и методов вычисления. Вместе с дифференциальным исчислением интегральное исчисление составляет основу математического анализа. Истоки интегрального исчисления относятся к античному периоду развития математики и берут начало от метода исчерпывания, разработанного математиками Древней Греции.
Метод исчерпывания это набор правил для вычисления площадей и объёмов, разработка которых приписывается Евдоксу Книдскому. Дальнейшее развитие метод получил в работах Евклида, а особым искусством и разнообразием применения метода исчерпывания славился Архимед.
Реферат на тему «История интегрального исчисления»
Интегральное исчисление. Исторический очерк.
Понятие интеграл непосредственно связано с интегральным исчислением – разделом математики, занимающимся изучением интегралов, их свойств и методов вычисления. Вместе с дифференциальным исчислением интегральное исчисление составляет основу математического анализа.
Истоки интегрального
Метод исчерпывания это набор правил для вычисления площадей и объёмов, разработка которых приписывается Евдоксу Книдскому. Дальнейшее развитие метод получил в работах Евклида, а особым искусством и разнообразием применения метода исчерпывания славился Архимед.
Типичная схема доказательств
методом исчерпывания выглядела
следующим образом. Для определения
величины A строилась некоторая
Предполагалось также
и что для любого целого K можно найти достаточно большое n, удовлетворяющее условию:
Где D – постоянно. После громоздких рассуждений из последнего выражения удавалось получить:
Как видно из приведённой схемы метод был основан на аппроксимации рассматриваемых объектов ступенчатыми фигурами или телами, составленными из простейших фигур или пространственных тел (прямоугольников, параллелепипедов, цилиндров и т.п., обозначенных последовательностью С1, С2, …, Сn, …). В этом смысле метод исчерпывания можно рассматривать как античный интегральный метод.
Кризис и упадок древнего мира привёл к забвению многих научных достижений. О методе исчерпывания вспомнили лишь в XVII веке. Это было связано с именами Исаака Ньютона , Готфрида Лейбница, Леонарда Эйлера и ряда других выдающихся учёных, положивших основу современного математического анализа.
В конце XVII и в XVIII веке все возрастающие запросы практики и других наук побуждали ученых максимально расширять область и методы исследований математики. Понятия бесконечности, движения и функциональной зависимости выдвигаются на первое место, становятся основой новых методов математики.
В конце XVII и в XVIII веке в математике и механике были получены классические результаты фундаментального значения. Основным здесь было развитие дифференциального и интегрального исчисления, теории дифференциальных уравнений, вариационного исчисления и аналитической механики.
Основные понятия и теория интегрального
и дифференциального
В ноябре 1613 года королевский математик и астролог австрийского двора И. Кеплер праздновал свадьбу. Готовясь к ней, он приобрёл несколько бочек виноградного вина. При покупке Кеплер был поражён тем, что продавец определял вместимость бочки, производя одно единственное действие - измеряя расстояние от наливного отверстия до самой дальней от него точки днища. Ведь такое измерение совершенно не учитывало форму бочки! Кеплер сразу увидел, что перед ним интереснейшая математическая задача - по нескольким измерениям вычислить вместимость бочки. Размышляя над этой задачей, он нашёл формулы не только для объёма бочек, но и для объёма самых различных тел: лимона, яблока, айвы и даже турецкой чалмы. Для каждого из тел Кеплеру приходилось создавать новые, зачастую очень хитроумные методы, что было крайне неудобно. Попытка найти достаточно общие, а, главное, простые методы решения подобных задач и привела к возникновению современного интегрального счисления. Но это уже была заслуга совсем другого математика.
Трудно найти другое имя, которое оказало бы столь сильное влияние на историю мировой науки и культуры, как Исаак Ньютон. Известный математик и историк науки Б. Л. Ван-дер-Варден пишет в своей книге “Пробуждающаяся наука”: “Каждый естествоиспытатель безусловно согласится, что механика Ньютона есть основа современной физики. Каждый астроном знает, что современная астрономия начинается с Кеплера и Ньютона. И каждый математик знает, что самим значительным н наиболее важным для физики отделом современной математики является анализ, в основе которого лежат дифференциальное и интегральное исчисления Ньютона. Следовательно, труды Ньютона являются основой огромной части точных наук нашего времени”. И не только наук: “Математика и техника влияют даже на нашу духовную жизнь, и настолько. что мы редко можем представить это себе полностью. Вслед за необычайным взлётом, которое пережило и XVII веке естествознание, последовал неизбежно рационализм XVIII века, обожествление разума, упадок религии... Кто отдает себе отчет в том, - спрашивает автор, - что с исторической точки зрения Ньютон является самой значительной фигурой XVII века?”
Исаак Ньютон родился в 1643 году. Мальчик посещал сначала сельскую школу, а в двенадцать лет его отправили учиться в ближайший город. Директор школы обратил внимание на способного мальчика и уговорил мать Ньютона отправить сына учиться в Кембриджский университет. Ньютон был принят туда в качестве бедного студента, обязанного прислуживать бакалаврам, магистрам и студентам старших курсов.
Кафедру математике в Кембридже
занимал тогда молодой
Поясним эту идею Ньютона. Известно, что любое действительное число можно представить десятичной дробью - конечной или бесконечной. Так. например:
Это значит, что любое число a можно представить в виде:
где N - целая часть, а a1, a2, ... an, ... могут
принимать одно из значений 0, 1, 2, 3, 4, 5,
6, 7, 8, 9. По аналогии с таким представлением
чисел Ньютон предположил, что любая функция
от x, например
, может быть представлена как бесконечный
многочлен или ряд, расположенный уже
не по степеням
, а по степеням x:
где a1, a2, ... an, ...- коэффициенты, которые каждый раз должны быть определены. Примером такого ряда может служить известная нам геометрическая прогрессия:
Представление функции с помощью ряда очень удобно. С помощью рядов, как писал Ньютон, “удается преодолеть трудности, в другом виде представляющиеся почти неодолимыми”.
Одновременно с Ньютоном к аналогичным идеям пришёл другой выдающийся учёный - Готфрид Вильгельм Лейбниц.
Готфрид Вильгельм Лейбниц родился
в Германии в г. Лейпциге в 1646 г. Любознательный
мальчик уже 6 лет вел интересные
беседы по истории со своим отцом,
профессором Лейпцигского университета.
К 12 годам он хорошо изучил латинский
язык и увлёкся древнегреческим.
Особенно его интересовали древние
философы, и он мог подолгу размышлять
о философских теориях
Свои колоссальные знания но математике Лейбниц приобрел самоучкой. Через три года, окончив университет, Лейбниц покинул Лейпциг. Он был обижен отказом ученого совета университета присвоить ому степень доктора прав. Отказ объяснили тем. что Лейбниц был... слишком молод!
Началась жизнь, полная напряженного труда и многочисленных путешествии. Легко себе представить, как неудобны были путешествовать в неуклюжих каретах по тряским дорогам Европы тех времен. Лейбниц умел не терять времени даром - много удачных мыслей пришло ему и голову именно во время этих продолжительных поездок. Лейбниц отличался исключительной способностью быстро “входить” и задачу и решать ее наиболее общим способом. Размышляя над философскими и математическими вопросами, Лейбниц убедился, что самым надежным средством искать и находить истину в науке может стать математика. Всю спою сознательную жизнь он стремился выразить законы мышления, человеческую способность думать и виде математического исчисления. Для этого необходимо, учил Лейбниц, уметь обозначать любые понятия или идеи определенными символами, комбинируя их в особые формулы, и сводить правила мышления к правилам в вычислениях но этим символическим формулам. Заменяя oбычные слова четко определенными символами, Лейбниц стремился избавить наши рассуждения от всякой неопределенности и возможности ошибиться самому или вводить в заблуждение других. Если, мечтал Лейбниц. между людьми возникнут разногласия, то решаться они будут не в длинных и утомительных спорах. а так, как решаются задачи или доказываются теоремы. Спорщики возьмут в руки перья и, сказав: “Начнем вычислять” - примутся за расчеты.
Как уже отмечалось, Лейбниц одновременно
с Ньютоном и независимо от него
открыл основные принципы дифференциального
и интегрального исчислений. Теория
приобрела силу после того, как
Лейбницем и Ньютоном было доказано,
что дифференцирование и
Любой человек, изучив небольшое число
правил действия с символами, обозначающими
операции дифференцирования и
действуют на функции, “перерабатывая”
их в другие, точно вычисляемые функции.
Лейбниц разрабатывает особую алгебру
действий с этими операторами. Он доказывает,
что обычное число а можно выносить за
знак оператора:
Одинаковые операторы можно выносить за скобку:
или:
Сокращенно все перечисленные свойства можно выразить соотношением:
где: a и b - числа.
Операторы. которые обладают таким свойством. называются линейными. Теория линейных операторов, которую с таким успехом начал развивать, Лейбниц,. в современной математике является хорошо разработанной и полезной в приложениях теорией.
Многократное применение операторов можно принимать как степень оператора, например, для d( ):
То, что основные операторы математического
анализа являются взаимно обратными
Лейбниц подчёркивал своей символикой,
утверждая, что в d(x) и
также взаимно обратны, как степени и корни
в обычном исчислении. Употребляя так
же обозначение, аналогичное обозначению
a-1 числа, обратного a, причём произведение
a×a-1=1. Обозначая операторы
или наоборот:
и понимая под их произведением последовательное их применение, имеем:
т. е. произведение есть “единица”, не меняющая функцию.
Однако, в подходе Ньютона-Лейбница крылось серьёзное противоречие.
Лейбниц и его последователи - братья Бернулли, Лопиталь и другие - трактовали дифференциалы как бесконечно малые разности обычных конечных величин, как тогда говорили - “реальных” величин “низшей” математики. Поэтому они обращались с теми и другими одинаково и в исчислении применяли к первым те же приемы, которые справедливы при действиях со вторыми. Вместе с тем выяснилось, что таким образом трактуемым бесконечно малым присуще свойство, противоречащее одному основному свойству основных конечных величин: если А — конечная величина, а a — бесконечно малая, то, чтобы результат исчисления получался совершенно точным, оказалось необходимым проводить вычисления в предположении, что А+a=А.
Дифференциальное исчисление, значение которого для развития науки и техники было вне сомнений, оказалось в парадоксальном положении: чтобы его методами получить точный результат, надо было исходить из ошибочного утверждения.
Ньютон пытался обосновать дифференциальное исчисление на законах механики и понятии предела. Но ему не удалось освободить свое исчисление флюксий от недостатков, присущих дифференциальному исчислению Лейбница. В практике вычисления Ньютон, как и Лейбниц, применял принцип отбрасывания бесконечно малых.
Такая непоследовательность позволила назвать дифференциальное исчисление Лейбница–Ньютона мистическим. Этим в первую очередь подчеркивалось, что Лейбниц и Ньютон вводили в дифференциальное исчисление бесконечно малые величины метафизически, сразу полагая их существующими, без выяснения их возникновения и развития и без анализа природы их специфических свойств.
Попытки построить анализ бесконечно малых и теорию рядов в полном соответствии с основными понятиями и истинами “низшей” математики с самого начала к успешным результатам не привели. Поэтому Лейбниц и его последователи пытались оправдать принципы анализа бесконечно малых путем сравнения бесконечно малой с песчинкой, которой можно пренебречь при вычислении высоты горы, посредством ссылок на вероятность и т. п.