Автор: Пользователь скрыл имя, 07 Декабря 2012 в 20:09, контрольная работа
Измерения – один из важнейших путей познания природы человеком. Они играют огромную роль в современном обществе. Наука, техника и промышленность не могут существовать без них. Каждую секунду в мире производятся многие миллиарды измерительных операций, результаты которых используются для обеспечения надлежащего качества и технического уровня выпускаемой продукции, обеспечения безопасной и безаварийной работы транспорта, для медицинских и экологических диагнозов и других важных целей.
Введение
Вероятностное описание результатов и погрешностей
Числовые параметры законов распределения. Центр распределения. Моменты распределений
Оценка результата измерения
Характеристики нормального распределения
Заключение
Список использованной литературы
Содержание:
Измерения – один из важнейших
путей познания природы человеком.
Они играют огромную роль в современном
обществе. Наука, техника и промышленность
не могут существовать без них. Каждую
секунду в мире производятся многие
миллиарды измерительных
Поэтому следует говорить
об измерительных технологиях, понимаемых
как последовательность действий, направленных
на получение измерительной
Другой фактор, подтверждающий
важность измерений, – их значимость.
Основой любой формы
Задача, которая ставится перед метрологом, желающим приблизиться к истинному значению измеряемой величины и оценить вероятность определенного отклонения в единичном опыте или в серии измерений, состоит в отыскании закона распределения вероятности получения определенного результата от какого-либо аргумента, связанного с отклонением результата от истинного значения. Наиболее универсальным способом достижения этой цели является отыскание интегральных и дифференциальных функций распределения вероятности.
Если при повторных
измерениях одной и той же физической
величины, проведенных с одинаковой
тщательностью и в одинаковых
условиях получаемые результаты, отличаются
друг от друга, то это свидетельствует
о наличии случайных
Однако остается неясным, какова вероятность появления того или иного значения погрешности, какое из множества лежащих в этой области значений величины принять за результат измерения и какими показателями охарактеризовать случайную погрешность результата. Для ответа на эти вопросы требуется принципиально иной, чем при анализе систематических погрешностей, подход. Подход этот основывается на рассмотрении результатов наблюдений, результатов измерений и случайных погрешностей как случайных величин. Методы теории вероятностей и математической статистики позволяют установить вероятностные (статистические) закономерности появления случайных погрешностей и на основании этих закономерностей дать количественные оценки результата измерения и его случайной погрешности.
Для характеристики свойств случайной величины в теории вероятностей используют понятие закона распределения вероятностей случайной величины. Различают две формы описания закона распределения: интегральную и дифференциальную. В метрологии преимущественно используется дифференциальная форма – закон распределения плотности вероятностей случайной величины.
Рассмотрим формирование
дифференциального закона на примере
измерений с многократными
На рис. 1 показана полученная в одном из опытов гистограмма, построенная на основании результатов 100 наблюдений, сгруппированных в таблице 1.
Таблица 1
В данном опыте в первый
и последующие интервалы
Рис. 1. Гистограмма
Если распределение случайной величины х статистически устойчиво, то можно ожидать, что при повторных сериях наблюдений той же величины, в тех же условиях, относительные частоты попаданий в каждый интервал будут близки к первоначальным. Это означает, что построив гистограмму один раз, при последующих сериях наблюдений можно с определенной долей уверенности заранее предсказать распределение результатов наблюдений по интервалам. Приняв общую площадь, ограниченную контуром гистограммы и осью абсцисс, за единицу, S0 =1, относительную частоту попаданий результатов наблюдений в тот или иной интервал можно определить как отношение площади соответствующего прямоугольника шириной Δl к общей площади.
При бесконечном увеличении числа наблюдений n→ ∞ и бесконечном уменьшении ширины интервалов Δl →0, ступенчатая кривая, огибающая гистограмму, перейдет в плавную кривую f (x) (рис. 2), называемую кривой плотности распределения вероятностей случайной величины, а уравнение, описывающее ее, – дифференциальным законом распределения. Кривая плотности распределения вероятностей всегда неотрицательна и подчинена условию нормирования в виде
Рис. 2. Кривая плотности распределения вероятностей
Закон распределения дает полную информацию о свойствах случайной величины и позволяет ответить на поставленные вопросы о результате измерения и его случайной погрешности. Если известен дифференциальный закон распределения f (x), то вероятность Ρ попадания случайной величины х в интервал от x1 до x2 можно записать в следующем виде
Графически эта вероятность выражается отношением площади, лежащей под кривой f (x) в интервале от x1 до x2 к общей площади, ограниченной кривой распределения. Следовательно, рассмотренное выше условие нормирования означает, что вероятность попадания величины х в интервал [− ∞; + ∞] равна единице, т.е. представляет собой достоверное событие. Вероятность этого события называется функцией распределения случайной величины и обозначается F(x). Функцию распределения F(x) иногда называют также интегральной функцией распределения. В терминах интегральной функции распределения имеем
P {x1 ≤ x ≤ x2} = F (x1)− F (x2),
т.е. вероятность попадания результата наблюдений или случайной погрешности в заданный интервал равна разности значений функции распределения на границах этого интервала.
Рис. 3. Интегральная (а) и дифференциальная (б) функции распределения случайной величины
Интегральной функцией распределения F(x) называют функцию, каждое значение которой для каждого х является вероятностью события, заключающегося в том, что случайная величина xi в i -м опыте принимает значение, меньшее х. График интегральной функции распределения показан на рис. 3, а. Она имеет следующие свойства:
− неотрицательная, т.е. F(x) ≥ 0;
− неубывающая, т.е. f (x2) ≥ F(x1), если x2 ≥ x1;
− диапазон ее изменения: от 0 до 1, т.е. F(−∞) = 0; F(+∞) = 1;
− вероятность нахождения случайной величины х в диапазоне от x1 до
x2: P{x1 < x < x2}= F(x2) − F(x1).
Запишем функцию распределения через плотность:
Площадь, ограниченная кривой распределения, лежащая левее точки x (х
– текущая переменная) (рис. 4), отнесенная к общей площади, есть не что иное, как интегральная функция распределения F(x) = P{xi < x}.
Рис. 4. Кривая плотности распределения
вероятностей (дифференциальная функция
распределения случайной
Плотность распределения вероятностей f (x) называют
дифференциальной функцией распределения:
Пример распределения дискретной случайной величины приведен на рис. 5.
Рис. 5. Распределение дискретной случайной величины
Функция распределения является
самым универсальным способом описания
поведения результатов
− центр распределения;
− начальные и центральные моменты и производные от них коэффициенты – математическое ожидание (МО), среднее квадратическое отклонение (СКО), эксцесс, контрэксцесс и коэффициент асимметрии.
Координата центра распределения Xц определяет положение случайной величины на числовой оси и может быть найдена несколькими способами. Наиболее фундаментальным является определение центра по принципу симметрии вероятностей, т.е. нахождение такой точки XM на оси х, слева и справа от которой вероятности появления различных значений случайных погрешностей равны между собой и составляют P1 = P2 = 0,5:
Точка XM называется медианой, или 50%-ным квантилем. Для его нахождения у распределения случайной величины должен существовать только нулевой начальный момент. Координата Хц может быть определена и как центр тяжести распределения, т.е. как математическое ожидание случайной величины. Это такая точка X, относительно которой опрокидывающий момент геометрической фигуры, огибающей которой является кривая f (x), равен нулю:
У некоторых распределений, например, у распределения Коши, не существует МО, так как определяющий его интеграл расходится.
При симметричной кривой плотности распределения вероятностей f (x) оценкой центра распределения может служить абсцисса моды распределения, т.е. координата максимума плотности распределения Xm. Однако есть распределения, у которых не существует моды, например, равномерное. Распределения с одним максимумом называются одномодальными, с двумя – двухмодальные. Те распределения, у которых в средней части расположен не максимум, а минимум, называются антимодальными.
Для двухмодальных распределений применяется оценка центра в виде центра сгибов:
где xc1, xc2 – сгибы, т.е. абсциссы точек, в которых распределение достигает максимумов.
Для ограниченных распределений применяется оценка в виде центра размаха:
где x1, x2 – первый и последний члены вариационного ряда, соответствующего распределению.
При выборе оценки центра распределения
необходимо учитывать ее чувствительность
к наличию промахов в обрабатываемой
совокупности данных. Исключительно
чувствительны к наличию
При статистической обработке
данных важно использовать наиболее
эффективные, т.е. имеющие минимальную
дисперсию, оценки центра распределения,
так как погрешность в
Информация о работе Интегральная функция распределения вероятности случайной величины