Численные методы безусловной оптимизации нулевого порядка

Автор: Пользователь скрыл имя, 30 Октября 2012 в 16:35, реферат

Краткое описание

Теоретические вопросы, решение задач и ответы на тесты.

Оглавление

1 Численные методы безусловной оптимизации нулевого порядка…………..3
1.1 Метод прямого поиска (метод Хука-Дживса)………………………………9
1.2 Метод деформируемого многогранника (метод Нелдера—Мида)..……...12
1.3 Метод вращающихся координат (метод Розенброка)……………………..14
1.4 Метод параллельных касательных (метод Пауэлла)………………….…...16
2 Вопросы по теме ……………………………………………………….……...18
2.1 Задачи………………………………………………………………….……..19
Тесты……………………………………………………………………………...29
Список использованных источников………………………...…………………35

Файлы: 1 файл

1 Численные методы безусловной оптимизации нулевого порядка.doc

— 971.00 Кб (Скачать)


 

Министерство образования  и науки Российской Федерации

 

Волжский политехнический  институт (филиал) федерального государственного бюджетного образовательного учреждения высшего профессионального образования  «Волгоградский государственный технический  университет»

(ВПИ (филиал) ВолгГТУ)

Кафедра «Экономика и менеджмент»

Реферат по разработке управленческих решений на тему: Численные методы безусловной оптимизации нулевого порядка.

Выполнила:

Студентка гр. ВЭ-413

Иванова М.Р.

Проверила:

Гончарова Е.В.

 

 

 

                                                     Волгоград 2011

 

Оглавление

1 Численные методы безусловной оптимизации нулевого порядка…………..3

1.1 Метод прямого поиска (метод Хука-Дживса)………………………………9

1.2 Метод деформируемого  многогранника (метод Нелдера—Мида)..……...12

1.3 Метод вращающихся координат  (метод Розенброка)……………………..14

1.4 Метод параллельных касательных  (метод Пауэлла)………………….…...16

2 Вопросы по теме ……………………………………………………….……...18

2.1 Задачи………………………………………………………………….……..19

Тесты……………………………………………………………………………...29

Список использованных источников………………………...…………………35

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1 Численные методы безусловной  оптимизации нулевого порядка

 

Решение многих теоретических и  практических задач сводится к отысканию  экстремума (наибольшего или наименьшего значения) скалярной функции f(х) n-мерного векторного аргументах. В дальнейшем под x будем понимать вектор-столбец (точку в n-мерном пространстве):

Вектор-строка получается путем применения операции транспонирования:

.

Оптимизируемую функцию f(x) называют целевой функцией или критерием оптимальности.

В дальнейшем без ограничения  общности будем говорить о поиске минимального значения функции f(x) записывать эту задачу следующим образом:

f(x ) --> min.

Вектор х*, определяющий минимум целевой функции, называют оптимальным.

Отметим, что задачу максимизации f(x) можно заменить эквивалентной ей задачей минимизации или наоборот. Рассмотрим это на примере функции одной переменной (Рис. 1.1). Если х* - точка минимума функции y = f(x), то для функции y =- f(x) она является точкой максимума, так как графики функций f(x) и - f(x), симметричны относительно оси абсцисс. Итак, минимум функции f(x) и максимум функции - f(x) достигаются при одном и том же значении переменной. Минимальное же значение функции f(x), равно максимальному значению функции - f(x), взятому с противоположным знаком, т.е. min f(x) =-max(f(x)).

Рассуждая аналогично, этот вывод  нетрудно распространить на случай функции  многих переменных. Если требуется  заменить задачу минимизации функции  f(x1, …, xn) задачей максимизации, то достаточно вместо отыскания минимума этой функции найти максимум функции f(x1, …, xn). Экстремальные значения этих функций достигаются при одних и тех же значениях переменных. Минимальное значение функции f(x1, …, xn) равно максимальному значению функции - f(x1, …, xn), взятому с обратным знаком, т.е. min f(x1, …, xn) =max f(x1, …, xn). Отмеченный факт позволяет в дальнейшем говорить только о задаче минимизации.

Рис. 1.1. Экстремум

В реальных условиях на переменные xj, i=1, …. n, и некоторые функции gi (х), hi(х), характеризующие качественные свойства объекта, системы, процесса, могут быть наложены ограничения (условия) вида:

gi (х) = 0, i=1, …. n,

hi (х) <= 0, i=1, …. n,

a <= x <= b,

где

;

Такую задачу называют задачей условной оптимизации. При отсутствии ограничений имеет место задача безусловной оптимизации.

Каждая точка х в n-мерном пространстве переменных х1, …, хn, в которой выполняются ограничения, называется допустимой точкой задачи. Множество всех допустимых точек называют допустимой областью G. Решением задачи (оптимальной точкой) называют допустимую точку х*, в которой целевая функция f(х) достигает своего минимального значения.

Точка х* определяет глобальный минимум функции одной переменной f(x), заданной на числовой прямой Х , если x * X и f(x*) < f(x) для всех x* X (Рис. 1.2, а). Точка х* называется точкой строгого глобального минимума, если это неравенство выполняется как строгое. Если же в выражении f(х*) <= f(x) равенство возможно при х, не равных  х*, то реализуется нестрогий минимум, а под решением в этом случае понимают множество х* = [x* X: f(x) = f(x*)] (Рис. 1.2, б).

Рис. 1.2. Глобальный минимум. а - строгий, б - нестрогий

Точка х* Х определяет локальный минимум функции f(x) на множестве Х , если при некотором достаточно малом е > 0 для всех х, не равных  х*, x X, удовлетворяющих условию ¦х - х*¦<= е, выполняется неравенство f(х*) < f(х). Если неравенство строгое, то х* является точкой строгого локального минимума. Все определения для максимума функции получаются заменой знаков предыдущих неравенств на обратные. На Рис. 1.3 показаны экстремумы функции одной переменной f(х) на отрезке [a, b] . Здесь х1, х3, х6 - точки локального максимума, а х2, х4 - локального минимума. В точке х6 реализуется глобальный максимум, а в точке х2 - глобальный минимум.

Рис. 1.3. Экстремумы функции

Возможны два подхода к решению  задачи отыскания минимума функции многих переменных f(x) = f(x1, ..., хn) при отсутствии ограничений на диапазон изменения неизвестных. Первый подход лежит в основе косвенных методов оптимизации и сводит решение задачи оптимизации к решению системы нелинейных уравнений, являющихся следствием условий экстремума функции многих переменных. Как известно, эти условия определяют, что в точке экстремума х* все первые производные функции по независимым переменным равны нулю:

, i=1, …, n.

Эти условия образуют систему п нелинейных уравнений, среди решений которой находятся точки минимума. Вектор f’(х), составленный из первых производных функции по каждой переменной, т.е.

,

называют градиентом скалярной функции f(x). Как видно, в точке минимума градиент равен нулю.

Решение систем нелинейных уравнений - задача весьма сложная и  трудоемкая. Вследствие этого на практике используют второй подход к минимизации функций, составляющий основу прямых методов. Суть их состоит в построении последовательности векторов х [0], х [1], …, х [n], таких, что f(х[0])> f(х [1])> f(х [n])>… В качестве начальной точки x[0] может быть выбрана произвольная точка, однако стремятся использовать всю имеющуюся информацию о поведении функции f(x), чтобы точка x[0] располагалась как можно ближе к точке минимума. Переход (итерация) от точки х [k] к точке х [k+1], k = 0, 1, 2, ..., состоит из двух этапов:

1.выбор направления движения из точки х [k];

2.определение шага вдоль этого направления.

Методы построения таких  последовательностей часто называют методами спуска, так как осуществляется переход от больших значений функций к меньшим.

Математически методы спуска описываются  соотношением

x[k+1] = x[k] + akp[k], k = 0, 1, 2, ...,

где p[k] - вектор, определяющий направление спуска; ak - длина шага. В координатной форме:

Различные методы спуска отличаются друг от друга способами выбора двух параметров - направления спуска и  длины шага вдоль этого направления. На практике применяются только методы, обладающие сходимостью. Они позволяют  за конечное число шагов получить точку минимума или подойти к точке, достаточно близкой к точке минимума. Качество сходящихся итерационных методов оценивают по скорости сходимости.

В методах спуска решение задачи теоретически получается за бесконечное  число итераций. На практике вычисления прекращаются при выполнении некоторых критериев (условий) останова итерационного процесса. Например, это может быть условие малости приращения аргумента

или функции

.

Здесь k - номер итерации; е, g - заданные величины точности решения задачи.

Методы поиска точки минимума называются детерминированными, если оба элемента перехода от х[k] к x[k+l] (направление движения и величина шага) выбираются однозначно по доступной в точке х [k] информации. Если же при переходе используется какой-либо случайный механизм, то алгоритм поиска называется случайным поиском минимума.

Детерминированные алгоритмы безусловной  минимизации делят на классы в  зависимости от вида используемой информации. Если на каждой итерации используются лишь значения минимизируемых функций, то метод называется методом нулевого порядка. Если, кроме того, требуется вычисление первых производных минимизируемой функции, то имеют место методы первого порядка, при необходимости дополнительного вычисления вторых производных - методы второго порядка.

В настоящее время разработано  множество численных методов для задач как безусловной, так и условной оптимизации. Естественным является стремление выбрать для решения конкретной задачи наилучший метод, позволяющий за наименьшее время использования ЭВМ получить решение с заданной точностью.

Качество численного метода характеризуется многими факторами: скоростью сходимости, временем выполнения одной итерации, объемом памяти ЭВМ, необходимым для реализации метода, классом решаемых задач и т. д. Решаемые задачи также весьма разнообразны: они могут иметь высокую и малую размерность, быть унимодальными (обладающими одним экстремумом) и многоэкстремальными и т. д. Один и тот же метод, эффективный для решения задач одного типа, может оказаться совершенно неприемлемым для задач другого типа. Очевидно, что разумное сочетание разнообразных методов, учет их свойств позволят с наибольшей эффективностью решать поставленные задачи. Многометодный способ решения весьма удобен в диалоговом режиме работы с ЭВМ. Для успешной работы в таком режиме очень полезно знать основные свойства, специфику методов оптимизации. Это обеспечивает способность правильно ориентироваться в различных ситуациях, возникающих в процессе расчетов, и наилучшим образом решить задачу.

В этих методах для определения  направления спуска не требуется вычислять производные целевой функции. Направление минимизации в данном случае полностью определяется последовательными вычислениями значений функции. Следует отметить, что при решении задач безусловной минимизации методы первого и второго порядков обладают, как правило, более высокой скоростью сходимости, чем методы нулевого порядка. Однако на практике вычисление первых и вторых производных функции большого количества переменных весьма трудоемко. В ряде случаев они не могут быть получены в виде аналитических функций. Определение производных с помощью различных численных методов осуществляется с ошибками, которые могут ограничить применение таких методов. Кроме того, на практике встречаются задачи, решение которых возможно лишь с помощью методов нулевого порядка, например задачи минимизации функций с разрывными первыми производными. Критерий оптимальности может быть задан не в явном виде, а системой уравнений. В этом случае аналитическое или численное определение производных становится очень сложным, а иногда невозможным. Для решения таких практических задач оптимизации могут быть успешно применены методы нулевого порядка. Рассмотрим некоторые из них.

1.1 Метод прямого поиска (метод Хука-Дживса)

 

Суть этого метода состоит в  следующем. Задаются некоторой начальной точкой х[0]. Изменяя компоненты вектора х[0], обследуют окрестность данной точки, в результате чего находят направление, в котором происходит уменьшение минимизируемой функции f(x). В выбранном направлении осуществляют спуск до тех пор, пока значение функции уменьшается. После того как в данном направлении не удается найти точку с меньшим значением функции, уменьшают величину шага спуска. Если последовательные дробления шага не приводят к уменьшению функции, от выбранного направления спуска отказываются и осуществляют новое обследование окрестности и т. д.

Алгоритм метода прямого поиска состоит в следующем.

1. Задаются значениями координат  хi[0] , i = 1, ..., п , начальной точки х[0], вектором изменения координат Dх в процессе обследования окрестности, наименьшим допустимым значением е компонентов D х.

2. Полагают, что х[0] является базисной точкой хб, и вычисляют значение f(xб).

3. Циклически изменяют  каждую координату хбi, i = 1, ..., п , базисной точки хб на величину ?хi, i = 1, ..., п , т. е. хi[k] = хб + D х; хi[k] = хбi - ?хi. При этом вычисляют значения f(x[k]) и сравнивают их со значением f(xб). Если f(x[k]) < f(xб), то соответствующая координата хi, i = 1, ..., п , приобретает новое значение, вычисленное по одному из приведенных выражений. В противном случае значение этой координаты остается неизменным. Если после изменения последней п-й координаты f(x[k]) < f(xб), то переходят к п, 4. В противном случае - к п. 7.

4. Полагают, что х[k] является новой базисной точкой хб , и вычисляют значение f(xб).

5. Осуществляют спуск из точки  х[k] > хi[k+1] = 2хi[k] - xб , i = 1, ..., n , где xб - координаты предыдущей базисной точки. Вычисляют значение f(x[k+1]).

6. Как и в п. 3, циклически изменяют  каждую координату точки х[k+1], осуществляя сравнение соответствующих значений функции f(х) со значением f (х[k+1]), полученным в п. 5. После изменения последней координаты сравнивают соответствующее значение функции f(x[k]) со значением f(xб), полученным в п. 4. Если f(x[k]) < f(xб), то переходят к п. 4, в противном случае - к п. 3. При этом в качестве базисной используют последнюю из полученных базисных точек.

7. Сравнивают значения D х и е. Если D х < е, то вычисления прекращаются. В противном случае уменьшают значения D х и переходят к п. 3.

Достоинством метода прямого поиска является простота его программирования на компьютере. Он не требует знания целевой функции в явном виде, а также легко учитывает ограничения на отдельные переменные, а также сложные ограничения на область поиска.

Информация о работе Численные методы безусловной оптимизации нулевого порядка