Аппроксимация функций. Выбор эмпирических формул

Автор: Пользователь скрыл имя, 11 Октября 2014 в 23:06, курсовая работа

Краткое описание

Аппроксимация (от латинского "approximate" -"приближаться")- приближенное выражение каких-либо математических объектов (например, чисел или функций) через другие более простые, более удобные в пользовании или просто более известные. В научных исследованиях аппроксимация применяется для описания, анализа, обобщения и дальнейшего использования эмпирических результ.
В курсовой работе также представлены реализация расчетов апроксимации на языках программирования.

Оглавление

Введение………………………………………………..……………………..3
Глава 1. Теоретическая часть……………………….…………………….4
Глава 2. Практическая часть……………………………….………..…..18
Заключение………………………………………….………………………36
Список используемой литературы

Файлы: 1 файл

курсовая.doc

— 1.45 Мб (Скачать)

.

Из этой формулы следует, что погрешность метода зависит от свойств функции g(x), а также от расположения узлов интерполяции и точки z. Как показывают расчетные эксперименты, полином Лагранжа имеет малую погрешность при небольших значениях N<20. При бόльших N погрешность начинает расти, что свидетельствует о том, что метод Лагранжа не сходится (т.е. его погрешность не убывает с ростом N).

Рассмотрим частные случаи. Пусть N=1, т.е. заданы значения функции только в двух точках. Тогда базовые полиномы имеют вид:

, т.е. получаем формулы кусочно–линейной  интерполяции.

Пусть N=2. Тогда:

В результате мы получили формулы так называемой квадратичной или параболической интерполяции.

Пример: Заданы значений некоторой функции:

x

0

2

3

3.5

f

-1

0.2

0.5

0.8


Требуется найти значение функции при z=1, используя интерполяционный полином Лгранжа. Для этого случая N=3, т.е. полином Лагранжа имеет третий порядок. Вычислим значения базисных полиномов при z=1:

1.3.2. Подбор эмпирических формул

При интерполировании функций мы использовали условие равенства значений интерполяционного полинома и данной функции в узлах интерполяции. Если же исходные данные получены в результате опытных измерений, то требование точного совпадения не нужно, так как данные не получены точно. В этих случаях можно требовать лишь приближенного выполнения условий интерполяции . Это условие означает, что интерполирующая функция F(x) проходит не точно через заданные точки, а в некоторой их окрестности, так, например, как это показано на рис.

Тогда говорят о подборе эмпирических формул. Построение эмпирической формулы состоит из двух этапов6 подбора вида этой формулы , содержащей неизвестные параметры , и определение наилучших в некотором смысле этих параметров. Вид формулы иногда известен из физических соображений (для упругой среды связь между напряжением и деформацией) или выбираются из геометрических соображений: экспериментальные точки наносятся на график и примерно угадывается общий вид зависимости путем сравнения полученной кривой с графиками извесиных функций. Успех здесь в значительной степени определяется опытом и интуицией исследователя.

Для практики важен случай аппроксимации функции многочленами, т.е. .

После того, как выбран вид эмпирической зависимости степень близости к эмпирическим данным определяется, используя минимум суммы квадратов отклонений вычисленных и экспериментальных данных.

Метод наименьших квадратов

Пусть для исходных данных xi, fi, i=1,…,N (нумерацию лучше начинать с единицы), выбран вид эмпирической зависимости: с неизвестными коэффициентами . Запишем сумму квадратов отклонений между вычисленными по эмпирической формуле и заданными опытными данными:

.

Параметры будем находить из условия минимума функции . В этом состоит метод наименьших квадратов (МНК).

Известно, что в точке минимума все частные производные от по равны нулю:

(1)

Рассмотрим применение МНК для частного случая, широко используемого на практике. В качестве эмпирической функции рассмотрим полином

.

Формула (1) для определения суммы квадратов отклонений примет вид:

(2)

Вычислим производные:

Приравнивая эти выражения нулю и собирая коэффициенты при неизвестных , получим следующую систему линейных уравнений:

Данная система уравнений называется нормальной. Решая эту систему линейных уравнений, получаем коэффициенты .

В случае полинома первого порядка m=1, т.е. , система нормальных уравнений примет вид:

При m=2 имеем:

Как правило, выбирают несколько эмпирических зависимостей. По МНК находят коэффициенты этих зависимостей и среди них находят наилучшую по минимальной сумме отклонений.

Пример. Заданы координаты точек:

x

-5

-3.5

-2

1.5

3.25

5

f

0.5

1.2

1.4

1.6

1.7

1.5


т.е. N=6. Требуется найти эмпирические зависимости: линейную , квадратичную , гиперболическую по методу МНК и выбрать среди них наилучшую по наименьшей сумме квадратов отклонений.

Система нормальных уравнений для линейной зависимости:

Учитывая, что N=6, , получим

Решая систему линейных уравнений, получим . Следовательно, линейная зависимость имеет вид: .

Вычислим сумму квадратов отклонений: .

Рассмотрим квадратичную зависимость. Система нормальных уравнений имеет вид

Найдем неподсчитанные суммы:

Решая СЛАУ, получим

Следовательно, квадратичная зависимость имеет вид: .

Вычислим сумму квадратов отклонений: .

Выпишем систему нормальных уравнений для гиперболической зависимости. Согласно МНК находим сумму квадратов отклонений:

. Составляем систему нормальных  уравнений:

Или

Учитывая, что , получим

Сумма квадратов отклонений:

Из трех зависимостей выбираем наилучшую, т.е. квадратичную.

2.Практическая часть.

2.1. Выполнение аппроксимации  MathCAD

В MathCAD применяются 2 способа аппроксимации таблично заданной функции по МНК:

  • Формируем матрицу Грама и решаем систему линейных уравнений методом Гаусса, в результате получаем вектор коэффициентов полинома C.
  • Используем встроенную функцию системы linfit, возвращающую коэффициенты линейной аппроксимации по методу наименьших квадратов, используя заданные базисные функции, хранящиеся в векторе-функции.

Примеры:


 

2.2. Выполнение аппроксимации в Matlab

Метод наименьших квадратов позволяет по экспериментальным данным подобрать такую аналитическую функцию, которая проходит настолько близко к экспериментальным точкам, насколько это возможно.

Идея метода наименьших квадратов заключается в том, что функцию:

Y=f(x, a0, a1 ..., ak)

необходимо подобрать таким образом, чтобы сумма квадратов отклонений измеренных значений уi. от расчетных Y. была наименьшей.

Пример:

x=[1 2.2 2.4 2.7 3.1 3.5 4.5 5];

y=[9.054 15.077 15.754 18.3 17.984 15.852 1.772 -13.042];

%Вычисление вектора коэффициентов полинома y=a1*x^3+a2*x^2+a3*x+a4

a=polyfit(x,y,3)

%Вычисление значений  полиномов на интервале от 10 до 20

x1=0.9:0.5:5.1;

y1=polyval(a,x1);

%Построение графика полинома  и экспериментальных точек в  одной

%графической области

plot(x1,y1,'-k',x,y,'ok')

grid %Сетка

Результат:

a =

-1.3534 7.2257 -6.9270 10.0393

 

 

2. 3. Расчет коэффициентов аппроксимации в Microsoft Excel.

Функция y=f(x) задана таблицей 1

Таблица 1

Исходные данные.

12.85

154.77

9.65

81.43

7.74

55.86

5.02

24.98

1.86

3.91

12.32

145.59

9.63

80.97

7.32

47.63

4.65

22.87

1.76

3.22

11.43

108.37

9.22

79.04

7.08

48.03

4.53

20.32

1.11

1.22

10.59

100.76

8.44

61.76

6.87

36.85

3.24

9.06

0.99

1.10

10.21

98.32

8.07

60.54

5.23

25.65

2.55

6.23

0.72

0.53


Требуется выяснить - какая из функций - линейная, квадратичная или экспоненциальная наилучшим образом аппроксимирует функцию заданную таблицей 1.

Решение.

Поскольку в данном примере каждая пара значений встречается один раз, то между и существует функциональная зависимость.

Для проведения расчетов данные целесообразно расположить в виде таблицы 2, используя средства табличного процессора Microsoft Excel.

Таблица 2

Расчет сумм.

 

Поясним как таблица 2 составляется.

 

Шаг 1. В ячейки A2:A26 заносим значения .

Шаг 2. В ячейки B2:B26 заносим значения .

Шаг 3. В ячейку C2 вводим формулу =A2^2.

Шаг 4. В ячейки C3:C26 эта формула копируется.

Шаг 5. В ячейку D2 вводим формулу =A2*B2.

Шаг 6. В ячейки D3:D26 эта формула копируется.

Шаг 7. В ячейку F2 вводим формулу =A2^4.

Шаг 8. В ячейки F3:F26 эта формула копируется.

Шаг 9. В ячейку G2 вводим формулу =A2^2*B2.

Шаг 10. В ячейки G3:G26 эта формула копируется.

Шаг 11. В ячейку H2 вводим формулу =LN(B2).

Шаг 12. В ячейки H3:H26 эта формула копируется.

Шаг 13. В ячейку I2 вводим формулу =A2*LN(B2).

Шаг 14. В ячейки I3:I26 эта формула копируется.

 

Последующие шаги делаем с помощью автосуммирования .

 

Шаг 15. В ячейку A27 вводим формулу =СУММ(A2:A26).

Шаг 16. В ячейку B27 вводим формулу =СУММ(B2:B26).

Шаг 17. В ячейку C27 вводим формулу =СУММ(C2:C26).

Шаг 18. В ячейку D27 вводим формулу =СУММ(D2:D26).

Шаг 19. В ячейку E27 вводим формулу =СУММ(E2:E26).

Шаг 20. В ячейку F27 вводим формулу =СУММ(F2:F26).

Шаг 21. В ячейку G27 вводим формулу =СУММ(G2:G26).

Шаг 22. В ячейку H27 вводим формулу =СУММ(H2:H26).

Шаг 23. В ячейку I27 вводим формулу =СУММ(I2:I26).

Аппроксимируем функцию линейной функцией . Для определения коэффициентов и воспользуемся системой

Используя итоговые суммы таблицы 2, расположенные в ячейках A27, B27, C27 и D27, запишем систему в виде

решив которую, получим и .

Таким образом, линейная аппроксимация имеет вид .

Решение системы проводили, пользуясь средствами Microsoft Excel.

Результаты представлены в таблице 3.

 

   Таблица 3


Результаты коэффициентов линейной аппроксимации.

 

В таблице 3 в ячейках A37:B38 записана формула {=МОБР(A33:B34)}.

В ячейках D37:D38 записана формула {=МУМНОЖ(A37:B38;C33:C34)}.

 

Далее аппроксимируем функцию квадратичной функцией . Для определения коэффициентов , и воспользуемся системой

Используя итоговые суммы таблицы 2,

расположенные в ячейках A27, B27, C27, D27, E27, F27 и G27 запишем систему в виде

решив которую, получим , и .

Таким образом, квадратичная аппроксимация имеет вид

.

Решение системы проводили, пользуясь средствами Microsoft Excel. Результаты представлены в таблице 4.

Таблица 4

Результаты коэффициентов квадратичной аппроксимации.

 

В таблице 4 в ячейках E38:G40 записана формула {=МОБР(E33:G35)}.

В ячейках I38:I40 записана формула {=МУМНОЖ(E38:G40;H33:H35)}.

Теперь аппроксимируем функцию экспоненциальной функцией . Для определения коэффициентов и прологарифмируем значения и используя итоговые суммы таблицы 2, расположенные в ячейках A27, C27, H27 и I27 получим систему

 

где .

Решив систему, найдем , .

После потенцирования получим .

Таким образом, экспоненциальная аппроксимация имеет вид

.

Решение системы проводили, пользуясь средствами Microsoft Excel. Результаты представлены в таблице 5.

Таблица 5

Результаты коэффициентов экспоненциальной аппроксимации.

 

В таблице 5 в ячейках D45:E46 записана формула {=МОБР(D42:943)}.

В ячейках G45:G46 записана формула {=МУМНОЖ(D45:E46;F42:F43)}.

В ячейке G47 записана формула =EXP(G45).

Вычислим среднее арифметическое и по формулам:

Результаты расчета и средствами Microsoft Excel представлены в таблице 6.

Таблица 6

Вычисление средних значений X и Y.

 

В ячейке F49 записана формула =A26/25.

В ячейке F50 записана формула =B26/25.

Для того, чтобы рассчитать коэффициент корреляции и коэффициент детерминированности данные целесообразно расположить в виде таблицы 7, которая является продолжением таблицы 2.

Таблица 7

Вычисление остаточных сумм.

 

Поясним как таблица 7 составляется.

Ячейки A2:A27 и B2:B27 уже заполнены (см. табл. 2).

Далее делаем следующие шаги.

Шаг 1. В ячейку J2 вводим формулу =(A2-$F$49)*(B2-$F$50).

Шаг 2. В ячейки J3:J26 эта формула копируется.

Информация о работе Аппроксимация функций. Выбор эмпирических формул