Понятие логической формы и логического закона

Автор: Пользователь скрыл имя, 14 Апреля 2013 в 22:37, реферат

Краткое описание

Формальная логика - наука о законах и формах правильного мышления. В. С. Меськов пишет: “...Предметом науки логики являются рассуждения, а сама она есть наука о рассуждениях. Задачей логики как науки является установление законов и правил, которым подчиняются рассуждения”'. Рассуждения облекаются в логическую форму и строятся в соответствии с логическими законами. “...Логические формы и законы не пустая оболочка, а отражение объективного мира”2. Выясним более детально, что понимается под логической формой и логическим законом.

Файлы: 1 файл

Реферат_Логика.doc

— 78.50 Кб (Скачать)

Такие языковые выражения, как “самое глубокое озеро мира”, “пресноводное озеро в Восточной  Сибири на высоте около 455 метров”, “озеро, имеющее свыше 300 притоков и единственный исток - реку Ангару”, “озеро, глубина которого 1620 метров”, имеют одно и то же значение (озеро Байкал), но различный смысл, поскольку эти языковые выражения представляют озеро Байкал с помощью различных его свойств, т. е. дают различную информацию о Байкале.

В логике различают выражения, которые являются именными функциями, и выражения, являющиеся пропозициональными функциями. Примерами первых являются: “х2+ I”, “отец у”, “разность чисел z и 5”; примерами вторых являются: “х- поэт”, “7 +у =10”, “х > у - 7”. Рассмотрим эти два вида функций.

Именная функция - это выражение, которое при замене переменных постоянными превращается в обозначение предмета. Возьмем именную функцию “отец у”. Поставив вместо у имя “писатель Жюль Верн”, получим “отец писателя Жюля Верна” - имя предмета (в данном случае - имя человека).

Именная функция - это  такое выражение, которое не является непосредственно именем ни для какого предмета и нуждается в некотором  восполнении для того, чтобы стать  именем предмета. Так, выражение х2 - 1 не обозначает никакого предмета, но если мы его “восполним”, поставив, например, на место х имя числа 3 (обозначающее это число цифру), то получим выражение З2- 1, которое является уже именем для числа 8, т. е. для некоторого предмета. Аналогично выражение х2 + у2 не обозначает никакого предмета, но при подстановке на место -x и y каких-нибудь имен чисел, например “4” и “1”, превращается в имя числа 17. Такие, нуждающиеся в восполнении выражения, как x2-1, х2 + у2 , и называют функциями - первая от одного, вторая от двух аргументов.

Пропозициональной функцией называется выражение, содержащее переменную и превращающееся в истинное или ложное высказывание при подстановке вместо переменной имени предмета из определенной предметной области

Приведем примеры пропозициональных функций: “z - город”; “x - советский космонавт”; “у - четное число”; “х + у = 10”; “х3- 1 = 124”.

Пропозициональные функции  делятся на одноместные, содержащие одну переменную, называемые свойствами (например, “x - композитор”, “х - 7 == 3”, “z -гвоздика”), и содержащие две и более переменных, называемые отношениями (например, “х > у”; “х - z = 16”; “объем куба x равен объему куба у”).

Возьмем в качестве примера  пропозициональную функцию “х -нечетное число” и, подставив вместо х число 4, получим высказывание “4 - нечетное число”, которое ложно, а подставив число 5, получим истинное высказывание “5 - нечетное число”.

Разъясним это на конкретных примерах. Необходимо указать, какие из приведенных  выражений являются именными функциями  и какие пропозициональными; определить их местность, т. е. число входящих в выражение переменных, и получить из них имена или предложения, выражающие суждения (истинные или ложные).

а) “разность чисел 100 и х”. Это - именная одноместная функция; например, 100-6 есть имя предмета, имя числа 94.

б) “х2 +у”. Это - именная двухместная функция; при подстановке вместо х числа 5 и вместо у числа 7 превращается в имя предмета, имя числа 32.

в) “у -известный полководец”. Это пропозициональная одноместная функция; при подстановке вместо y имени “Александр Васильевич Суворов, родившийся 24 ноября 1730 г.”, получим истинное суждение: “Александр Васильевич Суворов, родившийся 24 ноября 1730 г., - известный полководец”, выраженное в форме повествовательного предложения.

г) “z является композитором, написавшим оперы х и y”. Это - пропозициональная трехместная функция. Она превращается в ложное суждение при подстановке вместо z имени “Бизе”, вместо х - “Аида”, а вместо у - “Травиата”. Суждение “Бизе является композитором, написавшим оперы “Аида” и “Травиата”, выраженное в форме повествовательного предложения, является ложным, потому что обе эти оперы написал не Бизе, а Верди.

Понятие пропозициональной функции  широко используется в математике. Все уравнения с одним неизвестным, которые школьники решают, начиная с первого класса, представляют собой одноместные пропозициональные функции, например, х + 2 = 7; 10 -х = 4. Неравенства, содержащие одну или несколько переменных, также являются пропозициональными функциями. Например, х < 7 или х2 -у > 0.

Семантические категории. Выражения (слова и словосочетания) естественного языка, имеющие какой-либо самостоятельный смысл, можно разбить на так называемые семантические категории, к которым относятся: 1) предложения: повествовательные, побудительные, вопросительные; 2) выражения, играющие определенную роль в составе предложений: дескриптивные и логические термины'.

Суждения выражаются в форме  повествовательных предложений (например: “Киев - город”, “Корова - млекопитающее”). В этих суждениях субъектами соответственно являются “Киев”, “корова”, а предикатами - “город”, “млекопитающее”.

К дескриптивным (описательным) терминам относятся:

1. Имена предметов - слова или словосочетания, обозначающие единичные (материальные или идеальные) предметы (“Аристотель”, “первый космонавт”, “7”) или классы однородных предметов (например, “пароход”, “книга”, “стихотворение”, “засуха”, “гвардейский полк” и др.).

В суждении “Енисей - река Сибири”  встречаются три имени предмета: “Енисей”, “река”, “Сибирь”. Имя  предмета “Енисей” выполняет роль субъекта, а имена “река” и “Сибирь” входят в предикат (“река Сибири”) как его две составные части.

2. Предикаторы (знаки предметно-пропозициональных функций) - слова и словосочетания, обозначающие свойства предметов или отношения между предметами (например, “порядочный”, “синий”, “электропроводный”, “есть город”, “меньше”, “есть число”, “есть планета” и др.). Предикаторы бывают одноместные и многоместные. Одноместные предикаторы обозначают свойства (например, “талантливый”, “горький”, “большой”). Многоместные предикаторы обозначают (выражают) отношения. Двухместными предикаторами являются: “равен”, “больше”, “мать”, “помнит” и др. Например: “Площадь земельного участка А равна площади земельного участка В”, “Мария Васильевна - мать Сережи”. Пример трехместного предикатора - “между” (например: “Город Москва расположен между городами Санкт-Петербург и Ростов-на-Дону”).

3. Функциональные знаки (знаки именных функций) - выражения, обозначающие предметные функции, операции (“сtg a”, “+”,“Ö” и др.).

Кроме того, в языке встречаются  так называемые логические термины (логические постоянные, или логические константы).

В естественном языке имеются слова  и словосочетания: “и”, “или”, “если... то”, “эквивалентно”, “равносильно”, “не”, “неверно, что”, “всякий” (“каждый”, “все”), “некоторые”, “кроме”, “только”, “тот... который”, “ни... ни”, “хотя... но”, “если и только если” и многие другие, выражающие логические константы (постоянные).

В символической (или математической) логике в качестве таких констант обычно используются конъюнкция, дизъюнкция, отрицание, импликация, эквиваленция, кванторы общности и существования и некоторые другие.

В символической логике логические термины (логические постоянные) записываются следующим образом:

-,^ , v, ύ , →, ≡.

Конъюнкция соответствует сонму “и”. Конъюнктивное высказывание обозначается: a ^ b, или а • b, или а & b (например, “Закончились лекции (а), и студенты пошли домой (b)”1.

Дизъюнкция соответствует союзу “или”. Дизъюнктивное суждение обозначается: a v Ь (нестрогая дизъюнкция) и a v b (строгая дизъюнкция); отличие их в том, что при строгой дизъюнкции сложное суждение истинно только в том случае, когда истинно одно из составляющих суждений, но не оба, а при нестрогой дизъюнкции истинными могут быть одновременно оба суждения. “Он шахматист или футболист” обозначается как а v b. “Сейчас Петров находится дома или в институте” обозначается как а b.

Импликация соответствует союзу “если... то”. Условное суждение обозначается: а → b. (например: “Если будет хорошая погода, то мы пойдем в лес”).

Эквиваленция соответствует словам “если и только если”, “тогда и только тогда, когда”, “эквивалентно”. Эквивалентное высказывание обозначается: а ≡ b, или а ↔ b, или а→← b.

Отрицание соответствует словам “не”, “неверно, что”. Отрицание высказывания обозначается: ā, ┐а, ~а [например: “Падает снег” (а); “Неверно, что падает снег” ( ā )].

Квантор общности обозначается и соответствует кванторным словам “все” (“всякий”, “каждый”, “ни один”). хР(х) - запись в математической логике. (Например, в суждении “Все красные мухоморы ядовиты” кванторное слово “все”).

Квантор существования обозначается и соответствует словам “некоторые”, “существует”. хР(х) - запись в математической логике. (Например, в суждениях “Некоторые люди имеют высшее образование” или “Существуют люди, которые имеют высшее образование” - кванторные слова выделены курсивом).


Информация о работе Понятие логической формы и логического закона