Автор: Пользователь скрыл имя, 21 Марта 2012 в 13:11, курсовая работа
Первые геометрические понятия возникли в доисторические времена. Разные формы материальных тел наблюдал человек в природе: формы растений и животных, гор и извилин рек, круга и серпа Луны и т. п. Однако человек не только пассивно наблюдал природу, но практически осваивал и использовал ее богатства. В процессе практической деятельности он накапливал геометрические сведения. Материальные потребности побуждали людей изготовлять орудия труда, обтесывать камни и строить жилища, лепить глиняную
1. Краткий обзор развития геометрии
1.1 Общий исторический обзор
1.2. О развитии геометрии в древней Греции до Евклида
2.Призма 9
2.1Площадь поверхности призмы
2.2. Призма и пирамида
2.3. Пирамида и площадь её поверхности
2.4.Измерение обьемов
2.5.О пирамиде и её обьеме
2.6. О призме и параллеппипеде
2.7.Параллеппипед
3. Симметрия в пространстве 23
Литература 24
Пирамиду Евклид определяет как телесную фигуру, ограниченную плоскостями, которые от одной плоскости (основания) сходятся в одной точке (вершине). Эго определение подвергалось критике уже в древности, например, Героном, предложившим следующее определение пирамиды: это фигура, ограниченная треугольниками, сходящимися в одной точке, и основанием которой служит многоугольник.
Важнейшим недостатком этого определения является использование неопределенного понятия основания. Тейлор определил пирамиду как многогранник, у которого все грани, кроме одной, сходятся в одной точке. Лежандр в “Элементах геометрии” так определяет пирамиду: “Телесная фигура, образованная треугольниками, сходящимися в одной точке и заканчивающаяся на различных сторонах плоского основания”. После этой формулировки разъясняется понятие основания. Определение Лежандра является явно избыточным, т.е. содержит признаки, которые можно вывести из других. А вот еще одно определение, которое фигурировало в учебниках ХIХ в.: пирамида - телесный угол, пересеченный плоскостью.
Еще в древности существовали два пути определения геометрических понятий. Первый вел от фигур высшего порядка к фигурам низшего. Такой точки зрения придерживался, в частности, Евклид, определяющий поверхность как границу тела, линию - как границу поверхности, концы же линии - как точки. Второй путь ведет, наоборот, от фигур низшего измерения к фигурам высшего: движением точки образуется линия, аналогично из линий составляется поверхность и т. д. Одним из первых, который соединил обе эти точки зрения, был Герон Александрийский, писавший, что тело ограничивается поверхностью и вместе с этим может быть рассмотрено как образованное движением поверхности. В появившихся позже на протяжении веков учебниках геометрии принималась за основу то одна, то другая, а иногда и обе вместе точки зрения.
2.3.
Пирамида и площадь ее
Определение. Многогранник, одна из граней которого - многоугольник, а остальные грани - треугольники с общей вершиной, называется пирамидой.
Пятиугольная пирамида SABCDE и ее развертка. Треугольники, имеющие общую вершину, называют боковыми гранями пирамиды; общую вершину боковых граней - вершиной пирамиды; многоугольник, которому не принадлежит эта вершина,- основанием пирамиды; ребра пирамиды, сходящиеся в ее вершине,- боковыми ребрами пирамиды.
Высота пирамиды - это отрезок перпендикуляра, проведенного через ее вершину к плоскости основания, с концами в вершине и на плоскости основания пирамиды. Отрезок SO - высота пирамиды.
Определение. Пирамида, основание которой - правильный многоугольник и вершина проектируется в его центр, называется правильной.
2.4. Измерение объемов
Объемы зерновых амбаров и других
сооружений в виде кубов, призм и
цилиндров египтяне и вавилоняне,
китайцы и индийцы вычисляли
путем умножения площади
Среди замечательных греческих ученых V - IV вв. до н.э., которые разрабатывали теорию объемов, были Демокрит из Абдеры и Евдокс Книдский.
Евклид не применяет термина “объем”. Для него термин “куб”, например, означает и объем куба. В ХI книге “Начал” изложены среди других и теоремы следующего содержания.
1. Параллелепипеды с одинаковыми высотами и равновеликими основаниями равновелики.
2. Отношение объемов двух параллелепипедов с равными высотами равно отношению площадей их оснований.
3. В равновеликих параллелепипедах площади оснований обратно пропорциональны высотам.
Теоремы Евклида относятся только к сравнению объемов, так как непосредственное вычисление объемов тел Евклид, вероятно, считал делом практических руководств по геометрии. В произведениях прикладного характера Герона Александрийского имеются правила для вычислений объема куба, призмы, параллелепипеда и других пространственных фигур.
2.5. О пирамиде и ее объеме
Термин “пирамида” заимствован из греческого “пирамис” или “пирамидос”. Греки в свою очередь позаимствовали это слово, как полагают, из египетского языка. В папирусе Ахмеса встречается слово “пирамус” в смысле ребра правильной пирамиды. Другие считают, что термин берет свое начало от форм хлебцев в Древней Греции “пирос” - рожь). В связи с тем, что форма пламени иногда напоминает образ пирамиды, некоторые средневековые ученые считали, что термин происходит греческого слова “пир” - огонь. Вот почему в некоторых учебниках геометрии XVI в. пирамида названа “огнеформное тело”.
В Древнем Египте гробницы фараонов имели форму пирамид. В III Тысячелетии до н.э. египтяне сооружали ступенчатые пирамиды, сложенные из каменных блоков; позже египетские пирамиды приобрели геометрически правильную форму, например пирамида Хеопса, высота которой достигает почти 147 м, и др. Внутри пирамид находились погребальные склепы и коридоры.
Согласно Архимеду, еще в V до н.э. Демокрит из Абдеры установил, что объем пирамиды равен одной трети объема призмы с тем же основанием и той же высотой. Полное доказательство этой теоремы дал Евдокс Книдский в IV до н.э.
В “Началах” Евклида
Интересно отметить, что в древних документах встречаются правила для определения объема усеченной пирамиды, о нет правил вычисления объема полной пирамиды.
В “Московском папирусе” имеется задача, озаглавленная “Действия с усеченной пирамидой”, в которой излагается верное вычисление объема одной усеченной пирамиды. В вавилонских клинописных табличках также не встречается вычисление объема пирамиды, но зато в них есть много примеров вычисления объема усеченной пирамиды.
2.6. О призме и параллелепипеде
В памятниках вавилонской и древнеегипетской архитектуры встречаются такие геометрические фигуры, как куб, параллелепипед, призма. Важнейшей задачей египетской и вавилонской геометрии было определение объема различных пространственных фигур. Эта задача отвечала необходимости строить дома, дворцы, храмы и другие сооружения.
Часть геометрии, в которой изучаются свойства куба, призмы, параллелепипеда и других геометрических тел и пространственных фигур, издавна называется стереометрией; Слово это греческого происхождения (“стереос” - пространственный, “метрео” - измеряю) и встречается еще у знаменитого древнегреческого философа Аристотеля. Стереометрия возникла позже, чем планиметрия. Евклид дает следующее определение призмы: “Призма есть телесная (т.е. пространственная) фигура, заключенная между плоскостями, из которых две противоположные равны и параллельны, остальные же - параллелограммы”. Тут, как и во многих других местах, Евклид употребляет термин “плоскость” не в смысле безгранично продолженной плоскости, а в смысле ограниченной ее части, грани, подобно тому как “прямая” означает у него и отрезок прямой.
Термин “призма” греческого происхождения и буквально означает “отпиленное” (тело).
Термин “параллелепипедальное тело” встречается впервые у Евклида и означает дословно “параллеле-плоскостное тело”. Греческое слово “кубос” употребляется Евклидом в том же смысле, что и наше слово “куб”
2.7. Параллелепипед
Определение. Призма, основание которой - параллелограмм, называется параллелепипедом.
В соответствии с определением параллелепипед - это четырехугольная призма, все грани которой – параллелограммы. Параллелепипеды, как и призмы, могут быть прямыми и наклонными.
Прямой параллелепипед, основанием которого служит прямоугольник, называют прямоугольным параллелепипедом. У прямоугольного параллелепипеда все грани - прямоугольники. Моделями прямоугольного параллелепипеда служат классная комната, кирпич, спичечная коробка.
Длины трех ребер прямоугольного параллелепипеда, имеющих общий конец, называют его измерениями. Например, имеются спичечные коробки с измерениями 15, 35, 50 мм. Куб - прямоугольный параллелепипед с равными измерениями. Все шесть граней куба - равные квадраты.
Рассмотрим некоторые свойства параллелепипеда.
Теорема. Параллелепипед симметричен относительно середины его диагонали.
Дано: АС1 (рис. ) - произвольный параллелепипед, В1D - его диагональ, точка О - середина этой диагонали.
Доказать: Z0(AC1) = AC1.
Доказательство. Рассмотрим центральную симметрию Z0 с центром в точке О. Центральная симметрия - перемещение (сохраняет расстояния), отображающее каждый луч на противоположный ему луч. Поэтому
B1 = Z0(D), B1C1 = Z0(DA), DA = B1C1, C1 = Z0(A).
Аналогично можно показать, что точки D1 и В, А1 и С также центрально-симметричны. Таким образом, симметрия отображает поверхность параллелепипеда на себя. Внутренность параллелепипеда также отображает на себя (параллелепипед можно рассматривать как пересечение полупространств, образованных плоскостями его граней, а перемещение отображает пересечение фигур на пересечение их образов).
Таким образом, центральная симметрия Z0 отображает параллелепипед на себя: Z0(AC1) = AC1. Теорема доказана.
Из
теоремы непосредственно
1. Любой отрезок с концами, принадлежащими поверхности параллелепипеда и проходящий через середину его диагонали, делится ею пополам; в частности, все диагонали параллелепипеда пересекаются в одной точке и делятся ею пополам.
Так, на рисунке A1O=OC, B1O=OD, D1O=OB, AO=OC1, а также MO=ON, где M`A1B1C1D1, N`ABCD, O`MN.
2. Противолежащие грани параллелепипеда параллельны и равны.
Так, на рисунке AA1D1D=BB1C1C, (AA1D1)П(BB1C1).
Рассмотренными свойствами обладает произвольный параллелепипед. Докажем одно свойство прямоугольного параллелепипеда.
Теорема. Квадрат длины диагонали прямоугольного параллелепипеда равен сумме квадрата трех его измерений.
Дано: АС1 - прямоугольный параллелепипед, чABч= a, чADч=b, чAA1ч=c - его измерения, чAC1ч=d - длина его диагонали.
Доказать: d2=a2+b2+c2.
Доказательство. Введем систему координат так, как показано на рисунке , приняв за ее начало вершину А, за произвольный базис тройку векторов V, b, c. Тогда вектор AC имеет координаты (a;b;c), и, следовательно,
є
чAC ч 2= d2=a2+b2+c2.
3. Симметрия в пространстве
Теорема,
в которой утверждается, что все
диагонали параллелепипеда
Точка О - это центр симметрии параллелограмма. Аналогично называют и точку О центром симметрии параллелепипеда, так как вершины А и С1, В и D1, С и А1, D и В1 симметричны относительно точки О. Впервые понятие центра симметрии встречается в ХVI в. в одной из теорем Клавиуса, гласящей: если параллелепипед рассекается плоскостью, проходящей через центр, то он разбивается пополам и, наоборот, если параллелепипед рассекается пополам, то плоскость проходит через центр. Лежандр, который впервые ввел в элементарную геометрию элементы учения о симметрии, говорит только о симметрии относительно плоскости и дает следующее определение: две точки A и B симметричны относительно плоскости a, если последняя перпендикулярна к АВ в середине этого отрезка. Лежандр показывает, что у прямого параллелепипеда имеются 3 плоскости симметрии, перпендикулярные к ребрам, а у куба 9 плоскостей симметрии, из которых 3 перпендикулярны к ребрам, а другие 6 проходят через диагонали граней.
Литература
1. Глейзер
Г.Д. Геометрия. Учебное
2. Погорелов
А.В. Геометрия. Учебное