Развитие термодинамики

Автор: Пользователь скрыл имя, 17 Марта 2012 в 01:21, контрольная работа

Краткое описание

Термодинамика - раздел прикладной физики или теоретической теплотехники, в котором исследуется превращение движения в теплоту и наоборот. В термодинамике рассматриваются не только вопросы распространения теплоты, но и физические и химические изменения, связанные с поглощением теплоты веществом, а также, наоборот, выделение теплоты в ходе физических и химических превращений.

Оглавление

Введение…………………………………………………………………………...3
1. Развитие термодинамики. Формирование представлений о превращении энергии…………………………………………………………………………….4
1.1 Первый закон термодинамики……………………………………………….6
1.2 Второй закон термодинамики………………………………………………..7
1.3 Третий закон термодинамики………………………………………………10
Заключение……………………………………

Файлы: 1 файл

КСЕ скинуть Word.docx

— 52.66 Кб (Скачать)

 

 

 

1.3 Третий закон  термодинамики

 

        При стремлении температуры к абсолютному нулю, энтропия системы приближается к постоянному минимуму. Энтропия открыла путь от технологии (тепловые машины) к космологии (направление времени и судьба Вселенной). Он знаменовал переход от существующего к возникающему. Наступил век Дарвина - из биологии (а также гуманитарных наук) в физику вошли представления о развитии, о росте вероятности состояния физической системы. Первый этап термодинамики завершился построением статистической физики в трудах Больцмана и Гиббса. Энтропия стала мерой неупорядоченности системы, объективной характеристикой недостатка информации о системе [3, 64].

На втором этапе развития термодинамики наука обратилась к изучению открытых неравновесных  систем, близких, однако, к равновесию. Это линейная термодинамика открытых систем создана трудами Онзагера, Пригожина и других наших современников. В этой науке зависимость от времени  стала количественной. Неравновесная  термодинамика не ограничивается констатацией возрастания энтропии в необратимых  процессах, но вычисляет скорость этого  возрастания - производную продукции  энтропии по времени, т.е. функцию диссипации. Два основных положения линейной термодинамики существенны и  нетривиальны. Во-первых, возможность  существования открытой системы  в стационарном неравновесном состоянии, в котором внутренняя продукция  энтропии компенсируется ее оттоком  из открытой системы. Во-вторых, сопряжение динамических процессов, благодаря  которому в открытой системе процесс, невозможный в отсутствие сопряжения, так сам по себе он связан с понижением энтропии, реализуется за счет свободной  энергии других, энтропийно выгодных процессов.

Классическая термодинамика  оказалась неспособной решить и  космологические проблемы характера  процессов, происходящих во Вселенной. Первую попытку распространить законы термодинамики на Вселенную предпринял один из основателей этой теории —  Р. Клаузиус, выдвинувший два постулата:

• энергия Вселенной всегда постоянна;

• энтропия Вселенной всегда возрастает [3, 84].

Если принять второй постулат, то необходимо признать, что все  процессы во Вселенной направлены в  сторону достижения состояния термодинамического равновесия, соответствующего максимуму  энтропии, а следовательно, состояния, характеризуемого наибольшей степенью хаоса, беспорядка и дезорганизации. В таком случае во Вселенной наступит тепловая смерть и никакой полезной работы в ней произвести будет  нельзя. Такие мрачные прогнозы встретили  критику со стороны ряда выдающихся ученых и философов, но в середине прошлого века было еще мало научных  аргументов для опровержения мнения Р. Клаузиуса и обоснования альтернативного  взгляда. Некоторые авторы предполагали, что наряду с энтропийными процессами в природе происходят антиэнтропийные  процессы, которые препятствуют наступлению "тепловой смерти" во Вселенной. Другие высказывали сомнение в правомерности  распространения понятий термодинамики, в частности энтропии, с отдельных  систем на Вселенную в целом. Но только единицы догадывались, что само понятие  закрытой, или изолированной, системы  является далеко идущей абстракцией, не отражающей реальный характер систем, которые встречаются в природе.

В последние десятилетия  наступил третий этап развития термодинамики - возникла физика диссипативных систем, физика неравновесных процессов. Открытые системы способны творить порядок  из хаоса за счет экспорта энтропии, ее оттока из открытой системы. Организм питается отрицательной энтропией, а не положительной энергией. Сформировалась новая область физики - физика диссипативных  систем или синергетика (Хакен). Через  сто лет после "Происхождения  видов" Дарвина физика объединилась с биологией в понимании процессов  необратимого развития, естествознание впервые встретилось с синергетикой именно в "Происхождении видов".

Термодинамика превратилась в стройную феноменологическую теорию, описывающую в самом общем  виде энергетические процессы в любых  системах; понятия, принципы, методы термодинамики  оказались поистине всеобъемлющими.

 

 

 

 

 

Заключение

 

      Современная наука и синергетика объясняют процесс самоорганизации систем следующим образом.

1. Система должна быть  открытой. Закрытая система в  соответствии с законами термодинамики  должна в конечном итоге прийти  к состоянию с максимальной  энтропией.

2. Открытая система должна  быть достаточно далека от  точки термодинамического равновесия. В точке равновесия система  обладает максимальной энтропией  и поэтому не способна к  какой-либо организации: в этом  состоянии достигается максимум  ее самодезорганизации. В состоянии,  близком к равновесию, система  со временем приблизится к  нему и придет в состояние  полной дезорганизации.

3. Фундаментальным принципом  самоорганизации служит возникновение  и усиление порядка через флуктуации. Такие флуктуации, или случайные  отклонения, системы от некоторого  среднего положения, в самом  начале подавляются и ликвидируются  системой. Но в открытых системах  благодаря усилению неравновесности  эти отклонения со временем  возрастают и в конце концов  приводят к "расшатыванию" прежнего  порядка и возникновению нового. Этот процесс обычно характеризуют  как принцип образования порядка  через флуктуации. Так как флуктуации  носят случайный характер, то  становится ясно, что появление  нового в мире всегда связано  с действием случайных факторов. Об этом говорили античные  философы Эпикур (341–270 до н.э.) и  Лукреций Кар (99–45 до н.э.)

4. Возникновение самоорганизации  опирается на положительную обратную  связь. Функционирование различных  автоматических устройств основывается  на принципе отрицательной обратной  связи, т.е. на получение обратных  сигналов от исполнительных органов  относительно положения системы  и последующей корректировки  этого положения управляющими  устройствами. В самоорганизующейся  системе изменения, появляющиеся  в системе, не устраняются,  а накапливаются и усиливаются,  что и приводит в конце концов  к возникновению нового порядка  и структуры.

5. Процессы самоорганизации,  как и переходы от одних  структур к другим, сопровождаются  нарушением симметрии. Так, мы  уже видели, что при описании  необратимых процессов пришлось  отказаться от симметрии времени, характерной для обратимых процессов в механике. Процессы самоорганизации, связанные с необратимыми изменениями, приводят к разрушению старых и возникновению новых структур.

6. Самоорганизация может  начаться лишь в системах, обладающих  достаточным количеством взаимодействующих  между собой элементов, имеющих  некоторые критические размеры.  В противном случае эффекты  от синергетического взаимодействия  будут недостаточны для появления  коллективного поведения элементов  системы и тем самым возникновения  самоорганизации.

Можно сделать вывод, что  чем выше по эволюционной лестнице система, тем более сложными и  многочисленными оказываются факторы, играющие роль в самоорганизации.

Три закона термодинамики  вместе с молекулярно-кинетической теорией составили основу термодинамики, сформировавшейся ныне в универсальную  строго логическую научную дисциплину.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Приложение 1

Глоссарий

 

Адиабатически изолированная  система — термодинамическая система, которая не обменивается с окружающей средой энергией в форме теплоты.

Внешние силы - это силы, действующие на тело извне. Под влиянием внешних сил тело или начинает двигаться, если оно находилось в состоянии покоя, или изменяется скорость его движения, или направление движения. Внешние силы в большинстве случаев уравновешены другими силами и их влияние незаметно.

Внутренняя энергия - полная энергия этого тела за вычетом кинетической энергии тела как целого и потенциальной энергии тела во внешнем поле сил.

Механические  системы - обладает определённым числом k степеней свободы и описывается с помощью обобщённых координат q1, … qk.

Обратимый процесс - равновесный тепловой процесс называется обратимым, если его можно провести обратно и в телах, окружающих систему, не останется никаких изменений.

Открытая система - система, которая взаимодействует с окружающей ее средой в каком-либо аспекте: информационном, энергетическом, вещественном и т. д.

Равнове́сный  тепловой процесс — тепловой процесс, в котором система проходит непрерывный ряд бесконечно близких равновесных термодинамических состояний

Изолированная система (замкнутая cистема) — термодинамическая система, которая не обменивается с окружающей средой ни веществом, ни энергией. Молекулярно-кинетическая теория -

Тепловой процесс - изменение макроскопического состояния термодинамической системы. Система, в которой идёт тепловой процесс, называется рабочим телом.

Тепловая энергия - форма энергии, связанная с движением атомов, молекул или других частиц из которых состоит тело.

Термодинамика - раздел физики, изучающий соотношения и превращения теплоты и других форм энергии.

Классическая  механика - механика, в основе которой лежат Ньютона законы механики и предметом изучения которой является движение макроскопических материальных тел, совершаемое со скоростями, малыми по сравнению со скоростью света.

Квантовая механика - фундаментальная физическая теория динамического поведения всех элементарных форм вещества и излучения, а также их взаимодействий. Квантовая механика представляет собой теоретическую основу, на которой строится современная теория атомов, атомных ядер, молекул и физических тел, а также элементарных частиц, из которых все это состоит.

Энтропия - (от греч. ἐντροπία — поворот, превращение) — понятие, впервые введённое Клаузиусом в термодинамике для определения меры необратимого рассеивания энергии, меры отклонения реального процесса от идеального. Определённая как сумма приведённых теплот, она является функцией состояния и остаётся постоянной при обратимых процессах, тогда как в необратимых — её изменение всегда положительно.

 

 

 

 

 

 

 

 

 

 

 

 

Приложение 2.

Именной указатель

 

Людвиг Больцман — австрийский физик-теоретик, основатель статистической механики и молекулярно-кинетической теории. Член Австрийской академии наук (1895), член-корреспондент Петербургской академии наук (1899) и ряда других.

Джозайя Уиллард  Гиббс — американский математик, физик и физикохимик, один из создателей векторного анализа и математической теории термодинамики, что во многом предопределило развитие всех современных точных наук и естествознания в целом; чей образ запечатлён в "Галерее славы великих американцев". Его имя присвоено многим величинам и понятиям химической термодинамики: энергия Гиббса, парадокс Гиббса, правило фаз Гиббса — Гельмгольца, треугольник Гиббса — Розебома, уравнения Гиббса — Дюгема и др.

Гельмгольц Герман Людвиг Фердинанд - немецкий естествоиспытатель, член Берлинской АН (1871). Р. в Потсдаме. Физические исследования относятся к электродинамике, оптике, теплоте, акустике, гидродинамике. В работе "О сохранении силы" (1847) сформулировал и математически обосновал закон сохранения энергии, отметив его всеобщий характер, этому закону подчиняются механические, тепловые, электрические, физиологические и другие процессы. Разработал термодинамическую теорию химических процессов, введя широко используемые понятия свободной и связанной энергии.

Джеймс Прескотт Джоуль — английский физик. Джоуль изучал природу тепла, и обнаружил её связь с механической работой. Это привело к теории сохранения энергии, что в свою очередь привело к разработке первого закона термодинамики. В честь Джоуля названа единица измерения энергии — джоуль. Он работал с лордом Кельвином над абсолютной шкалой температуры, делал наблюдения над магнитострикцией, открыл связь между током, текущем через проводник с определённым сопротивлением и выделяющемся при этом теплом, названный законом Джоуля.

Карно Лазар Никола - французский математик, член Парижской АН (1796).. Труды по математическому анализу и проективной геометрии. Выпустил книгу "Размышления о метафизике бесконечно малых".

 

Клаузиус Рудольф  Юлиус Эммануэль - немецкий физик, один из основателей термодинамики и молекулярно-кинетической теории теплоты. Первым понял и проанализировал глубокие идеи С. Карно и оценил их значение для теории теплоты и тепловых машин. Развивая эти идеи в 1850 дал первую формулировку второго начала термодинамики; "Теплота не может сама собою перейти от более холодного тела к более тёплому". К. доказал, что не существует способа передачи теплоты от более холодного тела к более нагретому без того, чтобы в природе не произошло каких-либо изменений, которые могли бы компенсировать такой переход. В 1865 К. ввёл понятие энтропии.

Уи́льям То́мсон, лорд Ке́львин - один из величайших физиков. Опубликовал ряд работ по приложению рядов Фурье к вопросам физики, провёл важные аналогии между явлениями распространения тепла и электрического тока и показал, как решение вопросов из одной из этих областей применить к вопросам другой области. Развил принципы, которые затем плодотворно приложил ко многим вопросам динамической геологии, например, к вопросу об охлаждении земли.

 

 

 

 

 

 

 

 

 

 

 

 

 

Приложение 3

Тест.

81. Биологические полимеры  …: 

 а)белки    б)нуклеиновые кислоты   в)полиэтилен

г)полисахариды    д)лавсан   е)вода

82. Эукариоты появились  в ……: 

а)Кайнозое           б) Рифее           в) Мезозое           г)Протерозое   д)Палеозое

83. Положительное значение  стресса может проявляться в  ….:

а)облегчении протекания многих соматических заболеваний

б)мобилизации  возможностей человека      

в)Повышения устойчивости к отрицательным воздействиям        

г)Появлении страха             д)неустойчивости нервной системы

Информация о работе Развитие термодинамики