Автор: Пользователь скрыл имя, 02 Ноября 2012 в 12:39, контрольная работа
Прошло более 2500 лет с той поры, как было положено начало осмыслению времени и пространства, тем не менее, и интерес к проблеме и споры философов, физиков и представителей других наук вокруг определения природы пространства и времени нисколько не снижаются. Значительный интерес к проблеме пространства и времени естественен и закономерен, влияния данных факторов на все аспекты деятельности человека нельзя переоценить. Понятие пространства - времени является важнейшим и самым загадочным свойством Природы или, по крайней мере, человеческой природы. Представление о пространстве времени подавляет наше воображение. Недаром попытки философов античности, схоластов средневековья и современных ученых, владеющих знанием наук и опытом их истории, понять сущность времени – пространства не дали однозначных ответов на поставленные вопросы.
В общей теории относительности
были раскрыты новые стороны зависимости
пространственно-временных
Как можно представить себе искривление пространства, о котором говорит общая теория относительности? Представим себе очень тонкий лист резины, и будем считать, что это - модель пространства. Расположим на этом листе большие и маленькие шарики - модели звезд. Эти шарики будут прогибать лист резины тем больше, чем больше масса шарика. Это наглядно демонстрирует зависимость кривизны пространства от массы тела и показывает также, что привычная нам евклидова геометрия в данном случае не действует (работают геометрии Лобачевского и Римана). Теория относительности установила не только искривление пространства под действием полей тяготения, но и замедление хода времени в сильных гравитационных полях. Даже тяготение Солнца - достаточно небольшой звезды по космическим мерка - влияет на темп протекания времени, замедляя его вблизи себя. Поэтому если мы пошлем радиосигнал в какую-то точку, путь к которой проходит рядом с Солнцем, путешествие радиосигнала займет в таком случае больше времени, чем тогда, когда на пути этого сигнала - при таком же вблизи Солнца составляет около 0,0002 с.
Одной из причин создания общей теории относительности было желание Эйнштейна избавить физику от необходимости введения инерциальной системы отсчёта. Создание новой теории началось с пересмотра концепции пространства и времени в полевой доктрине Фарадея - Максвелла и специальной теории относительности. Эйнштейн акцентировал внимание на одном важном пункте, который остался незатронутым. Речь идет о следующем положении специальной теории относительности: "...двум выбранным материальным точкам покоящегося тела всегда соответствует некоторый отрезок определённой длины, независимо как от положения и ориентации тела, так и от времени. Двум отмеченным показаниям стрелки часов, покоящихся относительно некоторой системы координат, всегда соответствует интервал времени определённой величины, независимо от места и времени". Специальная теория относительности не затрагивала проблему воздействия материи на структуру пространства-времени, а в общей теории Эйнштейн непосредственно обратился к органической взаимосвязи материи, движения, пространства и времени.
В работе "Относительность и проблема пространства" Эйнштейн специально рассматривает вопрос о специфике понятия пространства в общей теории относительности. Согласно этой теории пространство не существует отдельно, как нечто противоположное "тому, что заполняет пространство" и что зависит от координат. "Пустое пространство, т.е. пространство без поля не существует. Пространство-время существует не само по себе, а только как структурное свойство поля". Теория относительности показала единство пространства и времени, выражающееся в совместном изменении их характеристик в зависимости от концентрации масс и их движения. Время и пространство перестали рассматриваться независимо друг от друга, и возникло представление о пространственно-временном четырехмерном континууме.
Для общей теории относительности до сих пор актуальной является проблема перехода от теоретических к физическим наблюдаемым величинам. Теория предсказала и объяснила три общелелятивистских эффекта: были предсказаны и вычислены конкретные значения смещения перегелия Меркурия, было предсказано и обнаружено отклонение световых лучей звёзд при их прохождении вблизи Солнца, был предсказан и обнаружен эффект красного гравитационного смещения частоты спектральных линий.
Рассмотрим далее релятивистску
Классические представления
о Вселенной можно
Однако первые попытки приложения к этой модели физических законов и концепций привели к неестественным выводам. Уже классическая космология требовала пересмотра некоторых фундаментальных положений (стационарность Вселенной, её однородность и изотропность, евклидовость пространства), чтобы преодолеть противоречия. Однако в рамках классической космологии преодолеть противоречия не удалось.
Модель Вселенной, которая следовала из общей теории относительности, связана с ревизией всех фундаментальных положений классической космологии. Общая теория относительности отождествила гравитацию с искривлением четырёхмерного пространства - времени. Чтобы построить работающую относительно несложную модель, учёные вынуждены ограничить всеобщий пересмотр фундаментальных положений классической космологии: общая теория относительности дополняется космологическим постулатом однородности и изотропности Вселенной. Строгое выполнение принципа изотропности Вселенной ведёт к признанию её однородности. На основе этого постулата в релятивистскую космологию вводится понятие мирового пространства и времени. Но это не абсолютные пространство и время Ньютона, которые хотя тоже были однородными и изотропными, но в силу евклидовости пространства имели нулевую кривизну. В применении к неевклидову пространству условия однородности и изотропности влекут постоянство кривизны, и здесь возможны три модификации такого пространства: с нулевой, отрицательной и положительной кривизной.
Возможность для пространства и времени иметь различные значения постоянной кривизны подняли в космологии вопрос конечна ли вселенная или бесконечна. В классической космологии подобного вопроса не возникало, т.к. евклидовость пространства и времени однозначно обуславливала её бесконечность. Однако в релятивистской космологии возможен и вариант конечной Вселенной - это соответствует пространству положительной кривизны.
Вселенная Эйнштейна представляет собой трёхмерную сферу - замкнутое в себе неевклидово трёхмерное пространство. Оно является конечным, хотя и безграничным. вселенная Эйнштейна конечна в пространстве, но бесконечна во времени. Однако стационарность вступала в противоречие с общей теорией относительности, вселенная оказалась неустойчивой и стремилась либо расшириться, либо сжаться. Чтобы устранить это противоречие Эйнштейн ввёл в уравнения теории новый член с помощью которого во вселенную вводились новые силы, пропорциональные расстоянию, их можно представить как силы притяжения и отталкивания.
Дальнейшее развитие космологии оказалось связанным не со статической моделью Вселенной. Впервые нестационарная модель была развита А. А. Фридманом. Метрические свойства пространства оказались изменяющимися во времени. Выяснилось, что Вселенная расширяется. Подтверждение этого было обнаружено в 1929 году Э. Хабблом, который наблюдал красное смещение спектра. Оказалось, что скорость разбегания галактик возрастает с расстоянием и подчиняется закону Хаббла V = H*L, где Н - постоянная Хаббла, L - расстояние. В связи с этим встают две важные проблемы: проблема расширения пространства и проблема начала времени. Существует гипотеза, что так называние "разбегание галактик" - наглядное обозначение раскрытой космологией нестационарности пространственной метрики. Таким образом, не галактики разлетаются в неизменном пространстве, а расширяется само пространство.
Вторая проблема связана с представлением о начале времени. Истоки истории Вселенной относятся к моменту времени t=0, когда произошёл так называемый «Большой взрыв», понятие времени до этого момента лишено физического, да и любого другого смысла".
В релятивистской космологии была показана относительность конечности и бесконечности времени в различных системах отсчёта. Это положение особо чётко отразилось в представлениях о "чёрных дырах". Речь идет об одном из наиболее интересных явлений современной космологии - гравитационном коллапсе. С.Хокинс и Дж. Эллис отмечают: "Расширение Вселенной во многих отношениях подобно коллапсу звезды, если не считать того, что направление времени при расширении обратное".
Как "начало" Вселенной, так и процессы в "чёрных дырах" связаны со сверхплотным состоянием материи. Таким свойством обладают космические тела после пересечения сферы Шварцшильда. Независимо от того, в каком состоянии космический объект пересёк соответствующую сферу Шварцшильда, далее он стремительно переходит в сверхплотное состояние в процессе гравитационного коллапса. После этого от звезды невозможно получить никакой информации, т.к. ничто не может вырваться из этой сферы в окружающее пространство - время: образуется "чёрная дыра".
Между черной
дырой и наблюдателем в
Таким образом, оказалось, что пространство - время в общей теории относительности содержит сингулярности, наличие которых заставляет пересмотреть концепцию пространственно - временного континуума как некоего дифференцируемого "гладкого" многообразия. Возникает проблема, связанная с представлением о конечной стадии гравитационного коллапса, когда вся масса звезды спрессовывается в точку ( r -> 0 ), когда бесконечна плотность материи, бесконечна кривизна пространства и т.д. Это вызывает обоснованное сомнение. Некоторые ученные считают, что в заключительной стадии гравитационного коллапса вообще не существует пространства - времени. С. Хокинг пишет: "Сингулярность - это место, где разрушается классическая концепция пространства и времени так же, как и все известные законы физики, поскольку все они формулируются на основе классического пространства - времени. Этих представлений придерживаются большинство современных физиков.
На заключительных
стадиях гравитационного
Представления о пространстве и времени, формулирующиеся в теории относительности Эйнштейна, на сегодняшний день являются наиболее последовательными. Но они являются макроскопическими, так как опираются на опыт исследования макроскопических объектов, больших расстояний и больших промежутков времени. При построении теорий, описывающих явления микромира, эта классическая геометрическая картина, предполагающая непрерывность пространства и времени (пространственно-временной континуум), была перенесена на новую область без каких-либо изменений. Экспериментальных данных, противоречащих применению теории относительности в микромире, пока нет. Но само развитие квантовых теорий, возможно, потребует пересмотра представлений о физическом пространстве и времени.3
2.2.Пространство и время на уровне микромира
В квантовой механике
была найдена принципиальная граница
применимости классических физических
представлений к атомным
Квантовая механика была
положена в основу бурно
- уровень молекулярно - атомных явлений,
- уровень релятивистских квантовоэлектродинамических процессов,
- уровень элементарных частиц,
- уровень ультрамалых масштабов, где пространственно - временные отношения оказываются несколько иными, чем в физике макромира.
В этой области по-иному следует понимать природу пустоты - вакуум. В квантовой электродинамике вакуум является сложной системой виртуально рождающихся и поглощающихся фотонов и других частиц. На этом уровне вакуум рассматривают как особый вид материи - как поле в состоянии с минимально возможной энергией. Квантовая электродинамика впервые наглядно показала, что пространство и время нельзя оторвать от материи, что так называемая "пустота" - это одно из состояний материи.