Происхождение и эволюция Солнечной системы

Автор: Пользователь скрыл имя, 04 Марта 2013 в 14:54, реферат

Краткое описание

Вот уже два века проблема происхождения Солнечной системы волнует выдающихся мыслителей нашей планеты. Этой проблемой занимались, начиная от философа Канта и математика Лапласа, плеяда астрономов и физиков XIX и XX столетий.

Оглавление

Введение……………………………………………стр.3.
1.Теории происхождения Солнечной системы......стр.4.

1.1.Теория Канта-Лапласа………………………стр.4.
1.2.Гипотеза Джинса ……………………………стр.5.
1.3.Электромагнитная гипотеза происхождения солнечной системы Х.Альвена – Ф.Хойла......................................стр.5.
1.4.Теория происхождения Солнечной системы О.Ю.Шмидта…………………………………………...стр.6.

2. Солнечная система……………………………..стр.8.

2.1. Солнце………………………………………стр.8.
2.2. Планеты земной группы…………………...стр.9.

2.2.1.Меркурий…………………………….стр.9.
2.2.2.Венера……………………………….стр.10.
2.2.3.Земля………………………………...стр.11.
2.2.4.Марс…………………………………стр.13.

2.3.Планеты-гиганты…………………...............стр.15.

2.3.1.Юпитер………………………….…..стр.15.
2.3.2.Сатурн……………………………….стр.17.
2.3.3.Уран………………………………….стр.18.
2.3.4.Нептун……………………………….стр.19.
2.3.5.Плутон……………………………….стр.19.

2.4.Малые планеты……………………………..стр.20.

Заключение……………………………….……...стр.22.
Список литературы……………………………...стр.23.

Файлы: 1 файл

Солнечная система.doc

— 186.00 Кб (Скачать)

На снимках Марса найдены  следы как ударно-метеоритной, так  и вулканической активности, а  так же следы движений, поднятий и растрескиваний марсианской коры и следы многих процессов разрушения и сглаживания рельефа поверхности, перемещения и отложения наносов. Перепад высоты между высочайшими вершинами и наиболее глубокими впадинами на Марсе составляет около 20 км. Для марсианских гор характерны многовершинные, в основном сглаженные формы. Кроме того, обнаружены типичные вулканические конусы с кратерами на вершине. На снимках поверхности Марса космическими аппаратами отчётливо видны детали, имеющие большое сходство с руслами рек на Земле. Поскольку весь комплекс информации противоречит возможности существования там рек, можно предположить, что марсианские русла возникли в результате растапливания подповерхностного водяного льда в зонах повышенного выделения тепла планеты. Некоторые дополнительные сведения о Марсе удаётся получить косвенными методами на основе исследований его природных спутников - Фобоса и Демоса.

Оба спутника Марса движутся почти  точно в плоскости его экватора. С помощью космических аппаратов установлено, что Фобос и Демос имеют неправильную форму и в своём орбитальном положении остаются  повёрнутыми к планете всегда одной и той же стороной. Размеры Фобоса составляют около 27 км, а Демоса - около 15 км.

Поверхность спутников Марса состоит из очень тёмных минералов и покрыта многочисленными кратерами. Один из них - на Фобосе имеет поперечник около 5,3 км. Кратеры, вероятно, рождены метеоритной бомбардировкой, происхождение системы параллельных борозд неизвестно. Угловая скорость орбитального движения Фобоса настолько велика, что он, обгоняя осевое вращение планеты, восходит, в отличие от других светил, на западе, а заходит на востоке.

 

 

2.3.Планеты-гиганты

Планеты-гиганты - очень похожи друг на друга; различия их в основном внешние, обусловленные изменением температуры в соответствии с их положением в пространстве. Юпитер, Сатурн, Уран и Нептун быстро вращаются, имеют огромной толщиной атмосферы, состоящие из метана и, вероятно, аммиака, и содержат в своем составе легкие газы – гелий, водород, причем последние характеризуются значительной концентрацией к центру.      

Несмотря на грандиозность  размеров, а может быть, именно вследствие этого, планеты-гиганты не предоставляют  никаких благоприятных возможностей в качестве обители для существования жизни в каких-либо известных нам проявлениях.

 

2.3.1.Юпитер

Юпитер - пятая по расстоянию от Солнца и самая большая планета Солнечной  системы - отстоит от Солнца в 5,2 раза дальше, чем Земля, и затрачивает  на одни оборот по орбите почти 12 лет. Экваториальный диаметр Юпитера 142 600 км (в 11 раз больше диаметра Земли). Период вращения Юпитера - самый короткий из всех планет - 9ч 50 мин 30с на экваторе и 9ч 55мин 40с в средних широтах. Таким образом, Юпитер, подобно солнцу, вращается не как твёрдое тело - скорость вращения неодинакова в разных  широтах.

Из-за быстрого вращения эта планета  имеет сильное сжатие у полюсов. Масса Юпитера равна 318 массам Земли. Средняя плотность 1,33 г/ , что близко к плотности Солнца. Ось вращения Юпитера почти перпендикулярна к плоскости его орбиты (наклон 87°). Даже в небольшой телескоп видно полярное сжатие Юпитера и полосы на его поверхности, параллельные экватору планеты.

Видимая поверхность Юпитера представляет собой верхний уровень облаков, окружающих планету. Благодаря этому все детали на поверхности Юпитера постоянно меняют свой вид. Из устойчивых деталей известно Большое Красное пятно (БКП), наблюдающееся уже более 300 лет. Это - громадное овальное образование, размерами около 35 000 км по долготе и 14 000 по широте между Южной тропической и Южной умеренной полосами. Цвет его красноватый, но подвержен изменениям. После неоднократных сближений с Юпитером американских АМС начиная в 1973 года, было однозначно установлено, что БКП — гигантский циклон, вращающийся в атмосфере планеты против часовой стрелки уже, по крайней мере, 400 лет (с момента его открытия) и совершающий полный оборот за шесть земных суток. Расчеты показывают, что в условиях атмосферы Юпитера такие колоссальные вихри могут существовать по несколько тысячелетий. На поверхности Юпитера наблюдаются и другие также полупостоянные образования, и все они до некоторой степени характеризуются блуждающим движением.

Спектральные исследования Юпитера  показали, что атмосфера его состоит  из молекулярного водорода и его соединений: метана и аммиака. В небольших количествах присутствуют также этан, ацетилен, фосфен и водяной пар. Облака Юпитера состоят из кристалликов и капелек аммиака. В декабре 1973 г. с помощью американского космического аппарата "Пионер-10" удалось обнаружить наличие гелия в атмосфере Юпитера и измерить его содержание. Можно считать, что атмосфера Юпитера на 74% состоит из водорода и на 26% из гелия. На долю метана приходится не более 0,1% состава атмосферы планеты (по массе). Атмосферный слой имеет толщину около 1000 км. Ниже чисто газового слоя в атмосфере лежит слой облаков, которые мы и видим в телескоп. Слой жидкого молекулярного водорода имеет толщину 24 000 км. На этой глубине давление достигает 300 ГПа, а температура 11 000 К, здесь водород переходит в жидкое металлическое состояние, т.е. становится подобным жидкому металлу. Слой жидкого металлического водорода имеет толщину около 42 000 км. Внутри него располагается небольшое железноселикатное твёрдое ядро радиусом 4 000 км. На границе ядра температура достигает 30 000 К.

В 1956 г. было обнаружено радиоизлучение Юпитера на волне 3 см., соответствующее  тепловому излучению с температурой 145 К. По измерениям в инфракрасном диапазоне  температура самых наружных облаков Юпитера 130 К. Полёты американских космических аппаратов "Пионер-10" и "Пионер-11" позволили уточнить строение магнитосферы Юпитера, а изменение температуры облачного слоя в основном подтвердило известный из наземных наблюдений результат: количество тепла, которое Юпитер испускает, более чем в двое превышает тепловую энергию, которую планета получает от Солнца. Возможно, что идущее из недр планеты тепло выделяется в процессе медленного сжатия гигантской планеты (1мм.в год).

Магнитное поле планеты оказалось сложным и состоит как бы из двух полей: дипольного (как поле Земли), которое простирается до 1,5 млн. км от Юпитера, и недипольного, занимающего остальную часть магнитосферы. Напряженность магнитного поля у поверхности в 20 раз больше, чем на Земле. Кроме теплового и дециметрового радиоизлучения Юпитер является источником радиовсплесков (резких усилений мощности излучения) на волнах длиной от 4 до 85 м, продолжительностью от долей секунды до нескольких минут или даже часов. Однако длительные возмущения - это не отдельные всплески, а серии всплесков - своеобразные шумовые бури и грозы. Согласно современным гипотезам, эти всплески объясняются плазменными колебаниями в ионосфере планеты.

Юпитер имеет 16 спутников. Первые 4 спутника открыты ещё Галилеем (Ио, Европа, Ганимед, Каллисто). Они, а также внутренний, самый близкий спутник Амальтея движутся почти в плоскости экватора планеты. Ио и Европа почти сравнимы с Луной, а Ганимед и Каллисто даже больше Меркурия, хотя по массе значительно уступают ему. По сравнению с другими спутниками галилеевские исследованы более детально. Внешние спутники обращаются вокруг планеты по сильно вытянутым орбитам с большими углами наклона к экватору (до 30°). Это маленькие тела - от 10 до 120 км, по-видимому, неправильной формы. Самые внешние 4 спутника Юпитера обращаются вокруг планеты в обратном направлении. Ио - самое сейсмически активное тело Солнечной системы. Во время пролетов мимо Ио космических кораблей, начиная с конца 70-х годов, было зафиксировано не одно извержение вулканов. Лава преимущественно состоит из серы. Ио окружена своеобразной атмосферой: большую часть ее составляет атомарный водород, но присутствуют также обширные облака из атомов натрия. Все спутники Юпитера, кроме крупнейших пяти, скорее всего, являются астероидами, захваченными мощным магнитным полем планеты.

По данным, полученным с американских космических аппаратов "Вояжер", Юпитер окружен в экваториальной области системой колец. Кольцо расположено  на расстоянии 50 000 км от поверхности  планеты, его ширина около 1 000 км. Существование кольца Юпитера было предсказано в 1960 г. астрономом С. К. Всехсвятским на основании наблюдений.

 

2.3.2.Сатурн

Сатурн - вторая по величине среди  планет Солнечной системы. Его экваториальный диаметр лишь немного меньше, чем  у Юпитера, но по массе Сатурн уступает Юпитеру более чем втрое и имеет очень низкую среднюю плотность - около 0,7 г/см3. Низкая плотность объясняется тем, что планеты-гиганты состоят главным образом из водорода и гелия. При этом в недрах Сатурна давление не достигает столь высоких значений, как на Юпитере, поэтому плотность вещества там меньше.

Спектроскопические исследования обнаружили в атмосфере Сатурна  некоторые молекулы. Температура  поверхности облаков на Сатурне  близка к температуре плавления метана (-184°С), из твёрдых частичек которого скорее всего и состоит облачный слой планеты.

В телескоп видны вытянутые вдоль  экватора тёмные полосы, называемые также  поясами, и светлые зоны, но эти  детали менее контрастны, чем на Юпитере, и отдельные пятна в  них наблюдаются гораздо реже. Сатурн  окружен кольцами, которые хорошо видны в телескоп в виде "ушек" по обе стороны диска планеты. Они были замечены ещё Галилеем в 1610 году.

Кольца Сатурна - одно из самых удивительных и интересных образований в Солнечной  системе. Плоская система колец опоясывает планету вокруг экватора и нигде не соприкасается с поверхностью. В кольцах разделяются три основные концентрические зоны, разграниченные узкими щелями: внешнее кольцо А, среднее В (наиболее яркое), внутреннее кольцо С, довольно прозрачное, "креповое", внутренний край его не резкий. Наиболее близкие к планете слаборазличимые части внутреннего кольца обозначаются символом D. Обнаружено также существование практически прозрачного самого внешнего кольца D'.

Сквозь все кольца Сатурна просвечивают звёзды. Кольца вращаются вокруг Сатурна, причём  скорость движения внутренних частей больше, чем наружных. Кольца Сатурна не сплошные, а представляют собой плоскую систему из бесконечного количества мелких спутников планеты. Плоскость колец практически совпадает с плоскостью экватора Сатурна и имеет постоянный наклон к плоскости орбиты, равный приблизительно 27°. В зависимости от положений планеты на орбите мы видим кольца то с одной, то с другой стороны. Полный цикл изменения их вида завершается в течение 29,5 лет - таков период обращения Сатурна вокруг Солнца. Время от времени кольца на короткий срок перестают быть видимыми в телескопы средних размеров. Это происходит когда плоскость колец проходит точно через Солнце и боковая поверхность оказывается лишенной яркого освещения, либо когда кольца бывают обращены к наблюдателю "ребром" и выглядят как чрезвычайно тонкая полоска, видимая только в крупнейшие телескопы. Толщина колец, по современным данным, около 3,5 км. Она очень мала по сравнению с их диаметром, который по наружному краю кольца А составляет 275 тыс. км. Размеры частиц не определены окончательно. Радиоастронометрические наблюдения свидетельствуют о наличии в кольцах множества частиц размером не менее нескольких сантиметров. Не исключена возможность присутствия в кольцах Сатурна ещё более крупных частиц, так же как и пыли.

Инфракрасные спектры колец  Сатурна напоминают спектры водяного инея. Однако в других частях спектра  позднее была обнаружена особенность, не характерная для чистого льда.

Кроме колец, у Сатурна известно 17 спутников: Мимас, Энцелад, Тефия, Диона, Рея, Титан, Гиперион, Япет, Феба, Янус. Последний - самый близкий к Сатурну, движется настолько близко к поверхности планеты, что обнаружить его удалось только при затмений колец Сатурна, создающих вместе с планетой яркий ореол в поле зрения телескопа. Самый большой спутник Сатурна - Титан - один из величайших спутников в Солнечной системе по размеру и массе. Его диаметр приблизительно такой же, как диаметр Ганимеда. Титан окружен атмосферой, состоящей из метана и водорода. В ней движутся непрозрачные облака. Все спутники Сатурна, кроме Фебы, обращаются в прямом направлении. Феба движется по орбите с довольно большим эксцентриситетом в обратном направлении.

 

2.3.3.Уран

Уран - седьмая по порядку от Солнца планета Солнечной системы. По диаметру он почти вчетверо больше Земли. Очень  далёк от Солнца и освещён сравнительно слабо.

Уран был открыт английским учёным В. Гершелем в 1781 г. Какие-либо детали на поверхности Урана различить не удаётся из-за малых угловых размеров планеты в поле зрения телескопа. Это затрудняет его исследования, в том числе и изучение закономерностей вращения. По-видимому, Уран (в отличие от всех других планет) вращается вокруг своей оси как бы лёжа на боку. Такой наклон экватора создаёт необычные условия освещения: на полюсах в определённый сезон солнечные лучи падают почти отвесно, а полярный день и полярная ночь охватывают (попеременно) всю поверхность планеты, кроме узкой полосы вдоль экватора. Так как Уран обращается по орбите вокруг Солнца за 84 года, то полярный день на полюсах продолжается 42 года, затем сменяется полярной ночью такой же продолжительности. Лишь в экваториальном поясе Урана Солнце регулярно восходит и заходит с периодичностью равномерного осевого вращения планеты. Даже в тех участках, где Солнце расположено в зените, температура на Уране составляет около -215°С. В таких условиях некоторые газы замерзают.

В составе атмосферы Урана по спектроскопическим наблюдениям найдены водород и небольшая примесь метана. В относительно большом количестве есть, по косвенным признакам, гелий. Как и другие планеты-гиганты, Уран имеет такой состав, вероятно, почти до самого центра. Однако средняя плотность Урана (1,58г/ ) несколько больше, чем плотность Сатурна и Юпитера, хотя вещество в недрах этих гигантов сжато гораздо сильнее, чем на Уране. Такую плотность Урана можно объяснит предположением о повышенном содержании гелия или существованием в недрах Урана ядра из тяжелых элементов.

Одной необычной особенностью Урана  является открытая в 1977г. система опоясывающих колец. Они состоят из множества  отдельных непрозрачных и, по-видимому, очень тёмных частиц. В отличие  от колец Сатурна кольца Урана - узкие, как бы "ниточные" образования. Они не видны в отраженном свете и обнаруживаются только по сильному ослаблению блеска звёзд, оказавшихся для земного наблюдателя позади колец при орбитальном движении планеты. Удалённость колец от центра Урана составляет от 1,6 до 1,85 радиуса планеты.

Информация о работе Происхождение и эволюция Солнечной системы