Проблема клонирования

Автор: Пользователь скрыл имя, 18 Декабря 2012 в 14:04, доклад

Краткое описание

Клонированием называют получение генетически идентичных живых организмов из соматических (а не половых клеток). Термин «клон» происходит от греческого слова klon, что означает - веточка, побег, черенок, и имеет отношение прежде всего к вегетативному размножению. Строго говоря, даже вегетативное размножение микроорганизмов делением можно назвать клонированием. Клонирование растений черенками, почками или клубнями в сельском хозяйстве, в частности в садоводстве, известно уже более 4-х тыс. лет.

Файлы: 1 файл

ксе.docx

— 58.66 Кб (Скачать)

Семинар

История клонирования. Клонированием называют получение генетически идентичных живых организмов из соматических (а не половых клеток). Термин «клон» происходит от греческого слова klon, что означает - веточка, побег, черенок, и имеет отношение прежде всего к вегетативному размножению. Строго говоря, даже вегетативное размножение микроорганизмов делением можно назвать клонированием[1]. Клонирование растений черенками, почками или клубнями в сельском хозяйстве, в частности в садоводстве, известно уже более 4-х тыс. лет. Начиная с 70-х годов нашего столетия для клонирования растений стали широко использовать небольшие группы и даже отдельные соматические клетки. Гораздо большую сложность представляет клонирование животных.Первые шаги к клонированию животных были предприняты около ста лет назад зоологом Московского Университета Александром Тихомировым, открывшим на примере тутового шелкопряда партеногенез: развитие без оплодотворения в результате химических и физических воздействий. Однако партеногенетические эмбрионы шелкопряда были нежизнеспособны[2]. В 30-е годы минувшего века академиком Борисом Астауровым проводилась серия исследований, в результате которых было подобрано термическое воздействие, способное одновременно активировать неоплодотворенное яйцо к развитию и блокировать процесс превращения ядра яйцеклетки с двойным хромосомным набором в ядро с одинарным набором. Таким образом были получены первые генетические копии. Увы, и такое потомство отличалось низкой жизнеспособностью. В дальнейшем этот метод был усовершенствован академиком Владимиром Струнниковым, работы которого по клонированию шелкопряда получили в итоге мировую известность. История клонирования позвоночных начинается в 40-е годы 20-го века, когда российский эмбриолог, а ныне Заслуженный Соросовский профессор, Георгий Лопашов на лягушках разработал метод пересадки ядер, на котором основаны все современные эксперименты по клонированию. Метод состоит в выделении ядра соматической клетки и имплантации его в обезъядренную (энуклеированную) яйцеклетку. Статья, написанная по материалам этих экспериментов, была отправлена в «Журнал общей биологии» в августе 1948 года. Однако света она так и не увидела вследствие состоявшейся месяцем позже сессии ВАСХНИЛ, приведшей к беспредельному господству «лысенковщины» в биологии. Статья Лопашова была забыта, а Россия, как это с ней обычно и бывало, лишилась на сей раз звания страны, первой открывшей клонирование. Через несколько лет, в начале 50-х уже американские эмбриологи Кинг и Бриггс провели опыты, подобные экспериментам Лопашова, и «переоткрыли» метод, чем и прославились.Впервые возможность клонирования эмбрионов позвоночных была продемонстрирована американскими биологами на лягушках в начале 50-х годов. Затем в 1962 году зоолог Оксфордского университета Дж. Гердон существенно продвинул эти результаты, когда в опытах с южноафриканскими жабами стал использовать в качестве донора ядер не зародышевые клетки, а уже вполне специализировавшиеся клетки эпителия кишечника подросшего головастика. Выживало не более двух процентов клонированного потомства, да и у выживших наблюдались различные дефекты, однако это был огромный шаг вперед по пути клонирования.Перейти от амфибий к млекопитающим оказалось весьма трудно, главным образом по той причине, что размеры яйцеклетки у млекопитающих примерно в тысячу раз меньше, чем у земноводных. Но к к концу 70-х эти трудности удалось преодолеть, так что к началу 80-х были освоены эксперименты по клонированию эмбрионов мышей, а к концу десятилетия ученые стали получать важные результаты на эмбрионах кроликов и крупных домашних животных. Вплоть до середины 90-х годов вопрос об использовании взрослых млекопитающих в качестве доноров ядер клеток практически не ставился, поскольку ученые-биологи занимались главным образом клонированием эмбрионов домашних животных, причем эксперименты в этой области и по сию пору проходят весьма непросто и с высоким уровнем неудач. Поэтому поистине сенсацией стала история с клонированием в 1996 году знаменитой ныне овечки Долли в шотландской фирме PPL Therapeutics (коммерческого отделения Розлин Института в Эдинбурге). Коллектив ученых, возглавляемый Иэном Уилмутом, продемонстрировал, что им удалось, используя соматические (неполовые) клетки взрослого животного, получить клональное животное – овцу по кличке Долли. При создании Долли половой процесс был «обойден», что позволило исключить случайно приобретаемые при скрещивании гены и открыть дорогу «чистому» генетическому программированию. Следующим шагом шотландских ученых стало выведение клонированных овец, которые имеют специальный ген, позволяющий им производить молоко с такими же белками, как у человека. По словам директора фирмы PPL Therapeutics Алана Колмена, «значение подобной методики заключается в том, что теперь мы можем выбирать еще до рождения гены, которые хотим изменить или удалить». А это уже означало принципиальную возможностью выращивать для трансплантации человеческие ткани и органы внутри, к примеру, свиней, наиболее близких нам по ряду важных биологических параметров. В области клонирования человека наибольшим достижением остается эксперимент 1987 г., когда специалисты Университета имени Дж. Вашингтона, использовавшие специальный фермент, сумели разделить клетки человеческого зародыша и клонировать их до стадии тридцати двух клеток (бластов, бластомеров). Правда, уже в наше время на волне шумихи вокруг клонирования появились сообщения от представителей представители религиозной секты раэлитов об якобы удачном клонировании человека, но доказательств представлено не было.

Клонирование растений. Строго говоря, клонированием можно считать любой процесс вегетативного размножения у растений. Но здесь мы рассмотрим только сравнительно новую технологию выращивания растений из изолированных групп клеток и отдельных соматических клеток. Клонирование растений – процесс значительно более простой, чем клонирование животных. Дело в том, что у растений (в отличие от животных) по мере их роста в ходе клеточной специализации - дифференцировки - клетки не теряют так называемых тотипотентных свойств, т.е. не теряют своей способности реализовывать всю генетическую информацию, заложенную в ядре. Поэтому практически любая растительная клетка, сохранившая в процессе дифференцировки свое ядро, может дать начало новому организму.Для клонирования достаточно растительную клетку изолировать из целого растения и поместить на питательную среду, содержащую солевые компоненты, витамины, гормоны и источник углеводов, она начинает делиться и образует культуру каллуса. В дальнейшем каллусы можно размножить и получить неограниченное количество биомассы. Основная трудность, с которой сразу же приходится сталкиваться исследователю - это то, что клетки в искусственных условиях начинают бурно делиться и расти, но при этом часто не в состоянии продуцировать вторичные метаболиты, т.е. биологически активные вещества растений.Клонирование растений чаще применяется в комплексе с другими биотехнологическими методами, такими как слияние (гибридизация) клеток и трансгенез (межвидовой перенос генов). Целые растения из реконструированных клеток получают затем методом клонирования.Слияние клеток осуществляется несколькими способами с использованием так называемых фузогенных (т.е. сливающих) агентов различного происхождения: физического (переменное электрическое или магнитное поле), химического (катионы, полиэтиленгликоль и др.), биологического (вирусы). Растительные и клетки перед слиянием превращают в протопласты (т.е. клетки, лишенные внешней жесткой клеточной стенки). Последующий отбор (скрининг) полученных гибридных клеток позволяет отобрать те из них, которые объединили геномы или фрагменты ДНК родительских клеток. Клеточная инженерия позволяет получать гибридные штаммы, клетки или даже целые растения (растения-регенераты), скрещивая между собой филогенетически (т.е. эволюционно) отдаленные организмы. В случае неполного слияния клеток (т.е. клетка-реципиент получает отдельные участки ядерного генетического материала или части клетки-донора (органеллы)) получаются асимметричные гибриды. Это расширяет возможности получения новых сортов сельскохозяйственных, для создания которых ранее использовались методы классической селекции. За последнее время созданы ряд межвидовых и межродовых гибридов табака, картофеля, томата, капусты, турнепса, сои и мн. др. Использование достижений клеточной инженерии, например, позволило разработать технологии получения безвирусных растений (например, картофеля) путем регенерации целого растения из одной соматической клетки.Ученые работают над изменением генотипов злаков. Они вводят в их генотипы специальный ген бактерий, который будет способствовать усвоению азота из атмосферного воздуха. Решение этой проблемы позволило бы сократить затраты средств на производство азотных удобрений. Перенос генов используется и при выведении новых сортов декоративных растений. Так, в генотип петунии был перенесен ген, нарушающий образование пигмента в лепестках. Таким путем была создана петуния с белыми цветками. Благодаря методам клеточной инженерии сроки, необходимые для выведения новых сортов растении, сокращаются с 10-12 лет при использовании обычных методов селекции до 3-4 лет.Трансгенные растения постепенно завоевывают мир. Особенно интенсивно процесс идет в США, Западной Европе, Японии, Китае. Только в Китае по некоторым данным зарегистрировано около 120 генетически модифицированных сортов сельскохозяйственных культур. В США генетически модифицированная соя вытеснила традиционную.Благодаря достижениям в области трансгенеза и клонирования мы сможем уже в ближайшее десятилетие в полной мере воспользоваться растением как наиболее дешевой и экологически безопасной фабрикой для производства большинства необходимых человеку материалов, пищи, лекарственных препаратов, химических соединений, сырья и т. д.Если говорить о перспективах медицинского применения генетически модифицированных растений, то наиболее популярен сейчас вопрос о синтезе витамина А в «Золотом рисе» — продукте совместных научных разработок групп Инго Потрикуса из Федерального технологического института (Швейцария) и Питера Бейера из Университета Фрайбурга (Германия). Получены результаты по экспрессии человеческого соматотропина (гормона роста) в хлоропластах табака. Это исследование заложило новую тенденцию в биотехнологии растений, а именно: синтез фармацевтических и диагностических препаратов и оральных вакцин растениями. Экспрессия соматотропина табаком — это работа Джеффри Стауба и его коллег в Monsanto Co., результаты которой опубликованы в журнале Nature Biotechnology (т. 18, с. 333, 2000). Синтез растениями антител и оральных вакцин уже был описан ранее. Недостатком предыдущих работ был относительно низкий уровень экспрессии искомых продуктов. И вот впервые важный с фармацевтической точки зрения белок в значительных количествах синтезирован путем использования новой системы экспрессии в хлоропластах.Биотехнология растений играет важную роль и в решении продовольственной проблемы. Биотехнология дает новый мощный инструмент, дополняющий уже существующие способы повышения производительности сельского хозяйства и, как следствие, стимулирования экономического роста в бедных странах.Однако, в то время как медицинская продукция уже получила всеобщее признание, внедрение генетически модифицированных продуктов питания в некоторых развитых странах встретило сильнейшую оппозицию, связанную, главным образом, с недостатком генетических знаний и, как следствие, необоснованными страхами. Тем не менее, определенные опасения в отношении трансгенных растений имеют под собой почву.По мнению специалистов, трансгенные организмы, преимущественно устойчивые к вредителям (в основном за счет токсинов, происходящих из Bacillus thuringiensis) способны вызвать изменения в популяции насекомых, однако куда большее влияние оказывает применение инсектицидов. Устойчивость к солям, воде, засухе и другие характеристики будут оказывать влияние, предсказать которое трудно, поэтому приступать к этим разработкам следует с особой осторожностью. Кроме того, следует гарантировать, что будут предприняты все необходимые меры предосторожности во всех случаях, когда продовольственные или кормовые культуры модифицируются с целью получения фармакологически активных соединений, которые могут быть перенесены к другим растениям, или проникать в почву и затем в воду.В целом продукты селекции растений значительно менее агрессивны, чем исходные или дикие растения. Это объясняется тем, что в них человек стремится закрепить выгодные для себя качества, а это зачастую серьезно ограничивает их способность выживать за пределами фермерского поля, где культивирование и контроль за сорняками значительно облегчает им жизнь. Так, например, многие зерновые культуры отбирались по тому признаку, что их колосья не рассыпаются в процессе созревания. Это существенно облегчает уборку урожая, и в то же время препятствует естественному распространению семян. Вероятно, это окажется справедливым и в отношении генетически модифицированных растений, так как по своей основе они также представляют собой культивируемые растения. Недавние эксперименты в Великобритании показали, что сельскохозяйственные генетически модифицированные растения, тестированные на выживание в природных условиях, не имеют никаких преимуществ перед их дикими сородичами.И все же существуют некоторые опасения, что чужеродные гены из ГМ-растений могут передаваться другим диким растениям, в результате чего возникнут сорняки, которые будет более сложно удержать под контролем. Эта опасность должна быть осознана. Считается недальновидным вводить ген толерантности к гербицидам в рис там, где красный рис произрастает как сорняк, и в сорго там, где сорняком является гумай (алепское сорго). Скрещивание с этими видами сильных сорняков может сделать неэффективным использование гербицидов для борьбы с ними.

Пока что в  результате применения трансгенных растений неблагоприятные эффекты не обнаружены.

Другое применение технологии клонирования – культивирование  растение на питательных средах. Таким  путем из небольшой части (клетки) растения можно получить до 1 млн. растений в год. Этот метод используют для  быстрого размножения редких или  вновь созданных ценных сортов сельскохозяйственных растений. При культивировании клеток растений на питательных средах из одной многократно делящейся клетки можно получить клоны, в клетках которых накапливается в несколько раз больше ценных веществ, чем в выращиваемом обычным способом целом растении. Так получают, например, биомассу женьшеня для нужд парфюмерной и медицинской промышленности. В 1992-93 гг.  в Биолого-почвенном институте ДВО РАН была получена трансгенная культура жень-шеня со встроенным геном ризогенных бактерий (rolC). Трансгенные корни имеют очень интересные свойства. В отдельных пробах содержание гинзенозидов в них составило до 6%, что существенно превышает содержание этих веществ в природных корнях женьшеня. Трансгенная культура кирказона маньчжурского (Aristolochia manshuriensis Kom.) является источником ценного препарата кардиотропного действия, предупреждающего развитие инфаркта миокарда и эффективного при постинфарктной реабилитации.Одним из новых направлений является разработка способов микроклонального размножения редких и исчезающих растений. Получены микрорастения в культуре in vitro женьшеня, кирказона, незабудочника, метаплексиса, гиностеммы, василистника, родиолы, кодонопсиса и других редких растений флоры. Создание такого своеобразного «банка» растений поможет сохранить исчезающие в природе виды.  По мере разработки методов восстановления природных экосистем эти банки будут использованы для реинтродукции типичных растений в природные местообитания.

Клонирование животных: технологияьОсновы. Клонирование целых животных. Клетки животных, дифференцируясь, лишаются тотипотентности, и в этом – одно из существенных их отличий от клеток растений. Именно здесь главное препятствие для клонирования взрослых позвоночных животных. Методы клонирования целых животных до сих пор не доведены до стадии практического («промышленного») применения. Наиболее удачными являются эксперименты по клонированию животных из эмбриональных недифференцированных клеток, не утративших тотипотентных свойств, однако есть положительные результаты и со зрелыми клетками. Процесс клонирования протекает следующим образом – ядро соматической клетки пересаживают в лишенную ядра (энуклеированную) яйцеклетку и имплантируют ее в организм матери (если это животное, требующее вынашивания). Энуклеация традиционно проводится микрохирургически или путем разрушения ядра ультрафиолетом, пересадка производится с помощью тонкой стеклянной пипетки или электрослиянием. В последнее время ученые из датского Института сельскохозяйственных наук разработали недорогую технологию клонирования, которая гораздо проще используемой ныне. По новой технологии, яйцеклетки разрезаются пополам, и половинки с ядрами выбрасываются. Выбирается пара оставшихся пустых половинок, которые «склеиваются» в одну яйцеклетку после добавления нового ядра. Самая дорогая часть оборудования, которую использовали в этом эксперименте, — машина для «сварки» клеток — стоит всего лишь $3,5 тысячи. Технология может быть полностью автоматизирована и поставлена «на поток».Успешность пересадки зависит от вида животного (амфибий клонируют успешнее, чем млекопитающих), методики пересадки и степени дифференцировки клетки-донора. Так, ещё Бриггс и Кинг в первых опытах на амфибиях установили, что если брать ядра из клеток зародыша на ранней стадии его развития – бластуле, то примерно в 80% случаев зародыш благополучно развивается дальше и превращается в нормального головастика. Если же развитие зародыша, донора ядра, продвинулось на следующую стадию – гаструлу, то лишь менее чем в 20% случаев оперированные яйцеклетки развивались нормально. Эти результаты позже были подтверждены и в других работах.Гердон (см. выше), использовавший в качестве доноров специализированные клетки эпителия, получил следующие результаты: в большинстве случаев реконструированные яйцеклетки не развивались, но примерно десятая часть их них образовывала эмбрионы. 6,5% из этих эмбрионов достигали стадии бластулы, 2,5% - стадии головастика и только 1% развился в половозрелых особей. Однако, появление нескольких взрослых особей в таких условиях могло быть связано с тем, что среди клеток эпителия кишечника развивающегося головастика довольно длительное время присутствуют первичные половые клетки, ядра которых могли быть использованы для пересадки. В последующих работах как сам автор, так и многие другие исследователи не смогли подтвердить данные этих первых опытов.Позже Гердон модифицировал эксперимент. Поскольку большинство реконструированных яйцеклеток (с ядром клетки кишечного эпителия) погибают до завершения стадии гаструлы, он попробовал извлечь из них ядра на стадии бластулы и снова пересадить их в новые энуклеированные яйцеклетки (такая процедура называется «серийной пересадкой» в отличие от «первичной пересадки»). Число зародышей с нормальным развитием после этого увеличивалось, и они развивались до более поздних стадий по сравнению с зародышами, полученными в результате первичной пересадки ядер. Таким образом, во многих работах показано, что в случае амфибий донорами ядер могут быть лишь зародыши на ранних стадиях развития, хотя и клоны дифференцированных клеток удавалось «доводить» до поздних стадий, особенно при использовании метода серийных пересадок.Опыты с амфибиями показали, что ядра различных типов клеток одного и того же организма генетически идентичны и в процессе клеточной дифференцировки постепенно теряют способность обеспечивать развитие реконструированных яйцеклеток, однако серийные пересадки ядер и культивирование клеток in vitro в какой-то степени увеличивает эту способность.У млекопитающих в качестве доноров используются малодифференцированные стволовые клетки или клетки ранних эмбрионов. Работа методически оказалась довольно трудной, прежде всего потому, что объем яйцеклетки у млекопитающих примерно в тысячу раз меньше, чем у амфибий. Однако эти трудности были успешно преодолены. Экспериментаторы научились микрохирургически удалять пронуклеусы из зигот (оплодотворенных яйцеклеток) млекопитающих и пересаживать в них клеточные.Опыты на мышах закончились полной неудачей – клоны гибли на стадии бластоцисты, что связано очевидно, с очень ранней активацией генома зародыша – уже на стадии 2-х клеток. У других млекопитающих, в частности, у кроликов, овец и крупного рогатого скота, активация первой группы генов в эмбриогенезе происходит позднее, на 8-16-клеточной стадии. Возможно поэтому первые значительные успехи в клонировании эмбрионов были достигнуты на других видах млекопитающих, а не на мышах.Для кроликов (Стик и Робл, 1989) был получен результат – 3,7% реконструированных яйцеклеток развились до нормальных животных.Работа с реконструированными яйцеклетками крупных домашних животных, коров или овец, идет несколько по-другому. Их сначала культивируют не in vitro, a in vivo – в перевязанном яйцеводе овцы – промежуточного (первого) реципиента. Затем их оттуда вымывают и трансплантируют в матку окончательного (второго) реципиента – коровы или овцы соответственно, где их развитие происходит до рождения детеныша. По данным одних авторов реконструированные зародыши лучше развиваются в яйцеклетке, чем в культуральной среде, хотя некоторые исследователи получили неплохие результаты и при культивировании. Таким образом, была в целом решена проблема клонирования крупного рогатого скота. Например, в одном из экспериментов, 92 яйцеклетки из 463 развились до взрослых коров.Позднее были получены клоны овец. В 1993-1995 годах, группа исследователей под руководством Уилмута получила клон овец – 5 идентичных животных, донорами ядер которых была культура эмбриональных клеток. Клеточную культуру получали следующим образом: выделяли микрохирургически эмбриональный диск из 9-дневного овечьего эмбриона (бластоцисты) и культивировали клетки in vitro в течение многих пассажей (по крайней мере до 25). Сначала клеточная культура напоминала культуру стволовых недифференцированных эмбриональных клеток, но вскоре, после 2-3-х пассажей, клетки становились уплотненными и морфологически сходными с эпителиальными. Эта линия клеток из 9-дневного зародыша овцы была обозначена как TNT4. Чтобы донорское ядро и реципиентная цитоплазма находились на сходных стадиях клеточного цикла, останавливали деление культивируемых клеток TNT4 на определенной стадии (G0) и ядра этих клеток пересаживали в энуклеированные яйцеклетки (соответственно на стадии метафазы II). Реконструированные эмбрионы заключали в агар и трансплантировали в перевязанные яйцеводы овец. Через 6 дней эмбрионы вымывали из яйцевода первого реципиента и исследовали под микроскопом. Отбирали те, которые достигли стадии морулы или бластоцисты и пересаживали их в матку овцы - окончательного реципиента, где развитие продолжалось до рождения. Родилось 5 ягнят (самок) из них 2 погибли вскоре после рождения, 3-й в возрасте 10 дней, а 2 оставшихся нормально развивались и достигли 8-9-месячного возраста. Фенотипически все ягнята были сходны с породой овец, от которой получали исходную линию клеток TNT4. Это подтвердил и генетический анализ. Эта работа, особенно в части культуры эмбриональных клеток, - значительное достижение в клонировании млекопитающих, хотя она и не вызвала столь шумного интереса, как статья того же Уилмута с соавторами, опубликованная в начале 1997 года, где сообщалось, что в результате использования донорского ядра клетки молочной железы овцы было получено клональное животное - овца по кличке Долли. Последняя работа методически во многом повторяет предыдущее исследование, но в ней ученые использовали не только эмбриональные, но еще и фибробластоподобные клетки (фибробласты – клетки соединительной ткани) плода и клетки молочной железы взрослой овцы. Клетки молочной железы получали от шестилетней овцы породы финн дорcет, находящейся на последнем триместре беременности. Все три типа клеточных культур имели одинаковое число хромосом – 54, как обычно у овец. Эмбриональные клетки использовали в качестве доноров ядер на 7-9-м пассажах культивирования, фибробластоподобные клетки плода - на 4-6-м пассажах и клетки молочной железы - на 3-6-м пассажах. Деление клеток всех трех типов останавливали на стадии G0 и ядра клеток пересаживали в энуклеированные ооциты (яйцеклетки) на стадии метафазы II. Большинство реконструированных эмбрионов сначала культивировали в перевязанном яйцеводе овцы, но некоторые и in vitro в химически определенной среде. Коэффициент выхода морул или бластоцист при культивировании in vitro в одной серии опытов был даже вдвое выше, чем при культивировании в яйцеводе (поэтому, видимо, нет строгой необходимости в промежуточном реципиенте и можно обойтись культивированием in vitro. Однако для полной уверенности в этом нужны дополнительные данные). Выход морул или бластоцист в серии опытов с культурой клеток молочной железы был примерно втрое меньше, чем в двух других сериях, когда в качестве доноров ядер использовали культуру фибробластов плода или эмбриональных клеток. Число живых ягнят в сравнении с числом пересаженных в матку окончательного реципиента морул или бластоцист было также в два раза ниже. В серии опытов с клетками молочной железы из 277 реконструированных яйцеклеток был получен только один живой ягненок, что говорит об очень низкой результативности такого рода экспериментов (0,36%). Анализ генетических маркеров всех семи родившихся в трех сериях экспериментов живых детенышей показал, что клетки молочной железы были донорами ядер для одного, фибробласты плода - для двух и эмбриональные клетки - четырех ягнят. Овца по кличке Долли развилась из реконструированной яйцеклетки, донором ядра которой была культивируемая клетка молочной железы овцы породы финн дорсет и фенотипически не отличается от овец этой породы, но сильно отличается от овцы-реципиента. Анализ генетических маркеров подтвердил этот результат. Успех[3] авторов этой работы прежде всего связан с использованием длительных клеточных культур, так как после многих пассажей в культуре клеток могли быть отобраны малодифференцированные стволовые клетки, которые, вероятно, и были использованы как доноры ядер. Большое значение также имел тот факт, что авторы, учитывая результаты своих предыдущих работ, синхронизировали стадии клеточного цикла яйцеклеток реципиентов и клеток доноров.

Из других млекопитающих  были успешно клонированы свиньи. Из изложенного выше следует, что методически или технически клонирование взрослых млекопитающих разработано еще недостаточно для практического применения. Для этого необходимо расширить круг исследований, включив в него, кроме овец, представителей и других видов животных. Такие работы необходимы, чтобы установить, не ограничивается ли возможность клонирования взрослых млекопитающих особенностями или спецификой какого-либо одного или нескольких видов. Затем необходимо существенно повысить выход жизнеспособных реконструированных эмбрионов и взрослых клонированных животных, выяснить, не влияют ли методические приемы на продолжительность жизни, функциональные характеристики и плодовитость животных. Для клонов высок риск дефектного развития реконструированной яйцеклетки, главной причиной которого может быть неполное репрограммирование генома донорского ядра.Что же касается возможности клонирования человека, который вызвал бурную реакцию общества, то о ней говорить пока не приходиться. Перспективным направлением в технологии клонирования животных является изучение генетических механизмов развития и дифференцировки клеток. Так, Рудольф Яниш из Whitehead Institute обнаружил, что 70-80 генов, которые обычно активизируются в развивающихся мышиных эмбрионах, у клонов оказываются либо неактивны, либо демонстрируют пониженную активность. Хотя непонятно, что же делают эти гены, однозначно установлено, что они включаются одновременно с еще одним геном, Oct4. Этот ген, в свою очередь, дает эмбрионам возможность создавать плюрипотентные клетки – то есть клетки, которые могут превратиться в любую ткань. Возможно, что часть активизирующихся одновременно с этим генов также задействуется в этом процессе. Теперь ученым предстоит выяснить, что заставляет эти гены молчать. В случае удачи наука сделает важный шаг вперед в разработке методологии клонирования.

Клонирование и  трансгенезТрансгенез – это техника переноса экзогенной ДНК, то есть генов, через клетки зародыша в целый новый организм. Эксплуатируя этот метод, можно получать животных, несущих качественно новые признаки. Например, возможно создание пород, устойчивых к заболеваниям или несущих новые, полезные для промышленной деятельности человека признаки. С распространением трансгенеза процесс создания новых пород и линий продуктивных животных значительно ускорится, кроме того, этот метод позволяет уже в настоящее время перенести исследования функциональной активности генов in vitro (на культурах клеток) в условия in vivo (на живых организмах), что важно для понимания фундаментальных основ жизни. По мнению многих видных ученых, технология создания трансгенных животных - это одна из наиболее захватывающих отраслей науки, появившихся в последние два десятилетия. Производство человеческих рекомбинантных медицинских препаратов из молока трансгенных животных служит выходом из многих затруднений, связанных с микробными биореакторами, таких как отсутствие у бактерий посттрансляционных модификаций белков, неправильное складывание молекул синтезируемого вещества, высокие расходы на очищение. Использование клеточных культур животных в качестве биореакторов характеризуется высокими расходами на культуральные среды и невысоким выходом продукта. Поэтому многие специалисты в области клонирования видят главную задачу в применении технологии переноса ядер для создания и размножения трансгенных животных с полезными свойствами. В настоящее время существуют разные технологии создания трансгенных животных. Наиболее распространенный – это микроинъекции генных конструкций в пронуклеусы зигот млекопитающих. Серьезным препятствием на пути использования этого метода является низкая эффективность его применения у сельскохозяйственных видов животных (<1%). Техника переноса ядер может помочь в решении и этой проблемы. Создание трансгенных животных методом клонирования, как правило, начинается с получения культуры клеток-доноров ядер. В 1997 г. И. Уилмут, К. Кэмпбелл и др. выделили культуру овечьих фетальных фибробластов из плодов на 35-дневном сроке суягности. На втором этапе фибробласты трансфицировались экзогенной ДНК: двумя генными конструкциями, одна из которых несла ген 9-го фактора свертывания крови (ген интереса) под бета-глобулиновым промотором, вызывающим экспрессию в молочной железе овец, а другая - ген устойчивости к антибиотику неомицину (маркерный), который позволил отобрать трансфицированные клоны, которые в дальнейшем подвергались анализу на содержание нужного гена. Перенос ядер трансфектантов в энуклеированные ооциты происходил по методике, использованной при клонировании Долли. В итоге было получено три трансгенных ягненка, несущих оба гена: маркерный и ген интереса. Белок 9-й фактор свертывания крови играет важную роль в коагуляции крови, его недостаток вызывает гемофилию В. В настоящее время он производится из человеческой сыворотки, поэтому выработка этого белка из молока овец могла бы стать альтернативным источником, лишенным потенциальной возможности переноса инфекционных заболеваний. Это было первое сообщение о рождении трансгенных животных в результате применения технологии клонирования. Уже известно о получении с использованием метода переноса ядер трансгенных мышей, крупного рогатого скота, овец и коз. В качестве доноров ядер использовались как трансфицированные культуры эмбриональных фибробластов, так и эмбриональных стволовых клеток.

Клонирование отдельных  органов и тканей (терапевтическое клонирование). Термин «терапевтическое клонирование» означает метод получения клеточных культур-трансплантатов, который заключается в том, что ядро соматической клетки пациента (например, кожных фибробластов) переносится в энуклеированный донорский ооцит; после процесса репрограммирования ядро становится тотипотентным и инициирует формирование эмбриона, который на определенной стадии развития может использоваться для получения культуры эмбриональных стволовых клеток (ЭС клетки), обладающих ядерным геномом пациента. Культура ЭС клеток подвергается воздействию веществ-индукторов, вызывающих направленную дифференциацию в определенный тип клеток, например, в такие как кардиомиоциты для замещения поврежденного участка миокарда или в синтезирующие инсулин бета-клетки островков Лангерганса. В настоящее время разрабатываются другие методы получения ЭС клеточных культур с использованием технологии генетической модификации генома для отбора дифференцированных популяций. Успешно проведенные эксперименты по клонированию макак-резус американскими учеными Л. Менг и др. из центра по изучению приматов в Орегоне свидетельствуют о потенциальной возможности переноса технологии трансплантации ядер на человека. Л. Менг и соавт. получили двух макак-резус в результате переноса ядер бластомеров из ранних эмбрионов. Ввиду значительного сходства физиологии и генетики у человека и остальных приматов для изучения процессов репрограммирования генома, развития клонов как во время протекания беременности, так и в постнатальный период и их эпигенетической стабильности нечеловеческие приматы могут служить самой оптимальной моделью. Прежде чем станет возможным всерьез воспринимать заявления о внедрении терапевтического клонирования в медицине необходимо добиться клонирования обезьян с использованием соматических дифференцированных клеток. Эффективность реконструкции эмбрионов приматов будет зависеть от оптимизации многих параметров. Наши представления о процессах созревания яйцеклеток в условиях in vitro все еще являются неполными, требуют усовершенствования протоколы слияния кариопласта с цитопластом и активации генома. Электрослияние не считается в настоящее время наиболее эффективным методом для соединения донорского ядра с энуклеированной яйцеклеткой: электрический импульс вызывает одновременно активацию реконструированного ооцита, вследствие чего в ядре не успевают завершиться процессы репрограммирования ядра. Уже разработаны методики по индукции слияния с использованием фитогемагглютинина, этиленгликоля и микрохирургическими методами, которые не вызывают одновременную активацию. Это позволяет отсрочить ее индукцию у прооперированного ооцита на 4-5 ч. Согласно вышеупомянутой методике И. Тезарик, П. Наги и др. в 2000 г. переносили кариопласты зрелых человеческих ооцитов в другие энуклеированные ооциты на стадии метафазы II. Учеными изучались слияние кариопласта с цитопластом и спонтанная и химическая активация реконструированной яйцеклетки. Эта технология, по мнению исследователей, может найти применение при лечении бесплодия, связанного с недостаточностью функции цитоплазматических компонентов яйцеклеток. К подобным экспериментам необходимо относиться с большой осторожностью, поскольку сама методика механического переноса кариопласта, воздействие на яйцеклетку химических агентов слияния могут иметь непредсказуемые последствия. Даже внедряемая технология переноса незначительного количества цитоплазмы от ооцита здорового донора в реципиентную яйцеклетку пациента в настоящее время подвергается активной критике из-за возможной дисрегуляции во взаимоотношениях между ДНК ядра и митохондрий. Отрицательный эффект генетического химеризма может быть еще более сильным при тотальной замене цитоплазматического окружения кариопласта и проявиться в виде нарушений различной природы как во внутриутробный период развития, так и после рождения организма.

Информация о работе Проблема клонирования