Автор: Пользователь скрыл имя, 27 Марта 2012 в 14:21, контрольная работа
Обобщение, анализ и синтез знания в научной картине мира дают возможность целостного видения мира.
Введение
1. Роль теоретико-вероятностных методов в развитии фундаментальных исследований
1.1. Природа фундаментальных открытий
1.2.Историческая обусловленность фундаментальных открытий
1.3. Классическая механика Ньютона
2. Активность живого и проблема целесообразности в современной биологии.
2.1. Сущность живого
2.2. Активность живого-взаимодействие с окружающей средой
2.3 Задачи управления и регуляции
2.4Цели и специфика управления в живых системах
Заключение
В.И.Вернадский создал учение о биосфере как об активной оболочке Земли, в которой совокупная деятельность живых организмов — геохимический фактор планетарного масштаба и значения. Термин «биосфера», введенный (1875) Э.Зюссом, относился к совокупности организмов, обитающих на поверхности Земли. В понятие живых организмов Вернадский включил и человека. Он выделял в биосфере косное (солнечная энергия, горные породы, минералы и т.д.) и биокосное (почвы, поверхностные воды и органические вещества). Хотя живое вещество по массе и объему составляет незначительную часть биосферы, оно играет основную роль в геологических процессах, связанных с изменением нашей планеты.
По
Вернадскому, биосфера — это
живое вещество планеты и
Если «жизненный цикл» отдельного организма конечен и его существование не беспредельно, то живое как целое можно считать геологически бессмертным. Геологически жизнь вечна, поэтому если отдельный индивидуум со временем теряет возможность совершать работу и прекращает свое существование, то сам процесс жизни отличается непрерывным ростом возможности совершать внешнюю работу. Эту идею он выразил в трех принципах, которые назвал биогеохимическими:
Эти принципы выражают закон только живой природы и не противоречат законам термодинамики. Весь поток живого вещества от самых простейших до самых развитых форм, включая разум человека и общественный труд, является той формой движения материи, где действует закон убывания энтропии, тогда как она растет для неорганической материи. И эти два вида материи связаны в единое целое. Закон возрастания энтропии Вернадский успешно применял для объяснения космической эволюции Земли. А рождение биосферы рассматривал как планетарно-косми-ческую «особую точку» — качественный скачок, до которого на поверхности нашей планеты преобладали процессы неживой природы, а после которого стали преобладать процессы в живой природе. Под действием лучистой энергии возникает и необратимо развивается органическая жизнь.
Вернадский считал, что жизнь на Земле возникла одновременно с формированием планеты: «Твари Земли являются созданием космического процесса, необходимой и закономерной частью стройного космического механизма». Среди множества закономерностей, имеющих место в биологии, геологии, биохимии и геохимии, Вернадский выделил основные эмпирические принципы.
10. Всякая система достигает положения устойчивого равновесия, когда ее свободная энергия равняется нулю или приближается к нему, т. е. когда вся возможная в условиях системы работа произведена. Понятие устойчивого равновесия исключительно важно.
Антропный принцип, выдвинутый Г.М.Идлисом (1958), связан с первым из перечисленных здесь принципов Вернадского и состоит в точном соответствии значений мировых констант с возможностями существования жизни. Удивительная согласованность ряда величин производит впечатление, что может существовать скрытый принцип, упорядочивающий всю Вселенную. К этому факту обращались очень многие. Сейчас его формулируют в двух вариантах — слабом и сильном. Как выразился известный американский физик Дж. Дайсон: «Если мы приглядимся ко Вселенной и увидим, как много случайностей послужили нам во благо, то кажется почти, что Вселенная знала, что мы появимся». Это — одна из формулировок слабого принципа, в английской литературе — WAP. Но он не отвечает на многие вопросы, например, почему Вселенная такова, что допустила зарождение жизни. А, может, не нужно создавать теорий, которые не допускают существование наблюдателя? Сильный принцип — возникновение жизни закономерно во Вселенной, но, может, появление наблюдателя и есть цель эволюции Вселенной?
Геологическую роль живого Вернадский классифицировал по пяти категориям: энергетическая, концентрационная, деструктивная, средообразующая, транспортная. Живые организмы творят миграцию химических элементов в биосфере посредством своего дыхания, питания, обмена веществ, непрерывной сменой поколений. Биогеохимическая энергия живого является источником энергии преобразования геосфер.
2.3 Задачи управления и регулирования
Управление и регулирование – близкие понятия, однако, между ними есть определенная разница. Управление – функция организованных систем, обеспечивающая выполнение следующих задач:
· сохранение определенной структуры системы;
· поддержание режима деятельности системы;
· реализацию цели деятельности системы по определенному правилу (алгоритму).
Эти задачи решаются с помощью регулирования.
Регулирование – функция управляющих систем, обеспечивающая выполнение таких задач, как:
· поддержание постоянства регулируемой величины на некотором определенном уровне;
· изменение регулируемой величины по заданному закону (программное регулирование);
· изменение регулируемой величины в соответствии с ходом некоторого внешнего процесса (следящее регулирование).
В целом
регулирование направлено на поддержание
гомеостазиса – относительно динамического
постоянства характеристик
Гомеостазис обусловлен способностью живых систем вырабатывать реакции в ответ на изменение параметров внешней среды, которые исключают или сводят к минимуму последствия этих изменений.
Задачи
управления в живой системе, таким
образом, состоят в том, чтобы
как можно эффективнее отвечать
на изменения, происходящие во внешней
и внутренней ее среде, то есть нейтрализовать
возмущающие воздействия на систему.
Живая система решает задачу управления
путем своевременной
В живых
системах управляющие факторы
Самоорганизация
– процесс, в ходе которого создается,
поддерживается или совершенствуется
организация сложной системы. Свойства
самоорганизации присущи всем живым
системам: клеткам, организмам, популяциям,
биогеоценозам. Процессы самоорганизации
происходят за счет перестройки существующих
и образования новых связей между
элементами системы. В самоорганизующихся
системах приспособление к изменяющимся
условиям или улучшение процесса
управления достигается изменением
структуры системы управления: включением
или отключением элементов
Уровни управления. В организме существует несколько уровней управления.
Внутриклеточный механизм регуляции осуществляет биохимическую регуляцию в соответствии с генетической информацией, которая содержится на молекулярном уровне.
Механизм тканевой регуляции– более высокий уровень регуляции, чем клеточный. Ткани взаимодействуют в рамках организма путем обмена определенными химическими веществами. Регулирует это взаимодействие еще один, более высокий уровень – железы внутренней секреции. Они вырабатывают гормоны, циркулирующие в крови, которые управляют организмом как целым.
Высший
уровень регуляции –
Управление организмом имеет многоуровневый «иерархический» характер. На каждом уровне управление направлено на решение задач, присущих этому уровню. Чем выше уровень, тем более общие для системы задачи на нем решаются. Главная же цель, общая для живой системы в целом ставится и решается на высшем уровне управления. Цели и задачи нижележащих уровней носят вспомогательную роль по отношению к общей цели.
Основой для процессов управления и регуляции является обмен информацией благодаря наличию информационных связей. Рассмотрим подробнее информационные связи внутри организма.
Гормональная связь. Гормон, то есть химический сигнал, по кровотоку посылает во все части организма, но только в определенные органы, способные принять данный сигнал, реагируют на него как приемники.
Нервные
связи (только у многоклеточных организмов).
Информационным параметром нервных
связей служит частота следования импульсов.
Частота импульсов
Генетическая связь. Источником сообщения в этом случае является молекула дезоксирибонуклеиновой кислоты (ДНК). Функционирование этой связи будет рассмотрено позже.
Таким образом,
процесс управления в информационном
смысле носит антиэнтропийный
2.4 Цели
и специфика управления в
Цели
управления в живых системах чрезвычайно
разнообразны. В любой системе
цель управления в общем виде заключается
в достижении системой множества
полезных для нее свойств при
разнообразных внешних
Важной стороной управления в живых системах является наличие обратных связей. Принцип обратных связей является одним из основных принципов самоуправления, саморегуляции и самоорганизации. Без наличия обратных связей процесс самоуправления невозможен. С помощью обратных связей сами отклонения объекта от заданного состояния формируют управляющие воздействия, которые приводят состояние объекта в заданное. Иными словами, обратная связь – это обратное воздействие результатов процесса на его протекание. Обратная связь может быть положительной и отрицательной.